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Introduction

This discussion will use a simple model to highlight some credit
risk measurement issues.
Dennis Glennon: 2 issues, non iid data and large sample sizes
These are offsetting if handled correctly.
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Samples

Let dit ∈ {0, 1} be the default indicator (asset i, period t),
D = {d}it the full dataset, rt =

∑
i dit the within period totals and

R the collection of {r}t . Suppose the marginal distribution of a
default is bernoulli p(d |θ) = θd(1− θ)1−d .
Simplest model: Binomial
Maximum entropy (dist. least informative about joint realizations,
data most informative about θ).
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Defaults

The Basel II (B2) capital requirements are based on a one-factor
model

vit = ρ1/2xt + (1− ρ)1/2εit

where εit is the time and asset specific shock and xt is the
common time shock, inducing correlation ρ across asset values
within a period. The random variables are standard normal and
independent. Default occurs when the value drops below T . The
marginal default rate is θ = Φ(T ). With ρ = 0 this leads to the
binomial model.
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Conditional Default Rates

The period t default probability is

θt = Φ[(T − ρ1/2xt)/(1− ρ)1/2]

Within a period the defaults are independent conditioning on
θt : p(d1t , ...dnt |θt) =

∏
i p(dit |θt) ∝ p(rt |θt), but conditioning on

θ they are dependent:
p(d1t , ...dnt |θ) =

∫ ∏
i p(dit |θt)p(θt |θ, ρ)dθt . The rt remain

independent across time. This distribution has lower entropy than
the binomial.
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Distribution p(θt |θ, ρ)

Pr(θt ≤ A) = Pr(Φ[(T − ρ1/2xt)/(1− ρ)1/2] ≤ A)

= Φ[((1− ρ)1/2Φ−1[A]− Φ−1[θ])/ρ1/2]

This could be generalized by adding autocorrelation in the
systematic factor xt , probably a good idea. That again reduces the
entropy in the distribution; data are less informative about θ.
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Some Implications

Theoretical implication: 2 views.
Doug Dwyer: The true model (marginally binomial with parameter
θ known) will mostly overpredict defaults.
Nick Kiefer: Short time series of defaults will usually underpredict
the long-run default rate θ.
Because the density p(θt |θ,ρ) is right skewed for ρ > 0.
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Practical Matters

In fact, the one-factor model with ρ close to values specified in
Basel 2 implies too much temporal variation in default rates.
Specification tests based on whether rates are consistent with the
model given estimates of θ will essentially never reject and are
hence useless (the opposite side of Glennon’s problem).
This might be mitigated by adding correlation in the systematic
factor.
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Additional Rambling

The validation exercise typically takes the prediction as a fixed set
of numbers and does a statistical test on whether the realization is
different from the prediction.
All randomness is due to the sampling distribution of the realized
default rates.
A better approach: acknowledge uncertainty in the prediction as
well as in the data.
Not usual since the models are estimated with such ”precision.”
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Additional Rambling

Perhaps the precision is overstated due to some of the dependence
issues, or due to unacknowledged model uncertainty or due to a
model drift over time, leading to more recent data being more
relevant than older data.
Represent uncertainty about θ by p(θ), based on all available
information (historical data, expert opinion, etc.).
Use the model p(rt+1|θ) to get the marginal distribution
p(rt+1) =

∫
p(rt+1|θ)p(θ)dθ. Predict using a loss function.
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Lot’s to do

Both in modeling and especially regarding validation.
Always interesting statistically - involves stepping away from the
formalities of inference.
Involves judgment in ways that are hard to supress.
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