

#### Comparing Errors from Non-coverage to Other Errors in a Mobile Web Survey

#### **Christopher Antoun**

Ph.D. Candidate, Michigan Program in Survey Methodology

#### Mick P. Couper

Research Professor, Survey Research Center, University of Michigan

> ITSEW October 3<sup>rd</sup> 2014 Bureau of Labor Statistics Washington D.C.

### Acknowledgements

- LISS (Longitudinal Internet Studies for the Social sciences) panel
- Fred Conrad, Brady West, Pedja Klasnja

#### Context

- Focus is on mobile Web surveys that require a smartphone to participate
  - necessary if want to use an app or other mobileonly feature
  - following Fuchs and Busse (2009) analysis of coverage errors in mobile-only Web surveys

### Smartphone surveys

- Offer several advantages over PC Web data collection:
  - Auxiliary data collection opportunities
    - GPS; Bluetooth medical devices (De Nazell et al. 2013)
  - App with prompts
    - TV viewing; EMA; time-use (Sonck & Fernee 2013)
  - Sampling
    - RDD sample of mobile-Web users; send invite using text messaging

#### Smartphone surveys

- But not everyone has their own smartphone which is necessary to participate
  - At least 20% of U.S. adults don't own a smartphone
  - Owners are younger and better educated than nonowners (Smith, 2012)
  - Survey variables related to smartphone ownership may be biased due to non-coverage
- Owning a smartphone is necessary but not sufficient -- one also has to use (and know how to use) mobile browsers, etc.

## **Current Study**

- Estimates non-coverage bias in a mobile Web survey for a selected group of survey variables
  - Usually don't know about uncovered population
  - Overcame this by conducting parallel PC Web survey
  - Know about those with and without smartphones; consider those without their own smartphones to be uncovered
- Compares non-coverage bias relative to other sources of error – nonresponse and measurement
- Considers the impact on nonresponse and measurement errors of providing phones to all respondents

#### $\blacksquare$

#### Mode Experiment

#### July – December 2013 LISS panel: probability Web panel in the Netherlands



#### Implementation

- Sent two emails to panel members
  - instructions about device to use
  - "normal" invitation email with URL
- To start mobile survey
  - could click URL in email
  - Or if received smartphone for study, then could click on bookmark on the phone's home screen
- Two email reminders near the end of month
- Normal cash incentive

#### Items

- Several measures that one might want to measure in smartphone survey:
  - health: exercise; social life; binge drinking
  - technology: tablet use; TV viewing
  - travel: drunk driving; eating out
- These variables lend themselves to passive measurement or apps with prompts
  - E.g., health survey + Bluetooth monitoring; TV viewing app; travel survey + GPS

# Predictions: Non-coverage

**Y**: survey variable of interest

**P**: propensity to be covered

**Z**: other survey variables

- Relation between survey variable and coverage can be represented by 3 models
  - 1) separate causes
    - Travel
  - 2) common cause
    - Health (affected by age, which affects smartphone adoption)
  - 3) Survey variable cause
    - Technology (social media use directly affects smartphone adoption)



#### Assumptions

- No carryover effects: response in wave 2 not affected by wave 1
- Benchmark is full population of panel members who agreed to participate in the experiment and completed the PC Web survey; deviations from benchmark regarded as error

– *relative* biases

### **Estimating Non-coverage Bias**

- Compare mean based on benchmark  $(\bar{y}_{\text{benchmark}})$  to mean based on those with smartphone ( $\bar{y}_{\text{covered}}$ )
  - Coverage deviation:  $B_{cov} = \overline{y}_{benchmark} \overline{y}_{covered}$
  - Assumes self-reported ownership is accurate and smartphones are not shared

#### **Estimating Nonresponse Bias**

- Compare mean based on those with smartphone ( $\overline{y}_{covered}$ ) to mean based on those with completed smartphone survey ( $\overline{y}_{respond}$ )
  - Nonresponse deviation:  $B_{nr} = \overline{y}_{covered} \overline{y}_{respond}$

#### **Estimating Measurement Bias**

- Difference between means based on PC Web responses ( $\overline{y}_{respond}$ ) and means based on smartphone survey responses ( $\overline{y}_{smartphone}$ ) for the same respondents
  - Measurement deviation:  $B_{meas} = \overline{y}_{respond} \overline{y}_{smartphone}$

### Subgroups

|                                 | Sample<br>Size | Rate  |
|---------------------------------|----------------|-------|
| Benchmark                       | 1180           |       |
| Covered                         | 843            | 71.4% |
| Respond                         | 614            | 72.8% |
| Respond<br>(smartphone answers) | 614            |       |

#### Results: Non-coverage errors



#### Logistic regression to predict noncoverage

- DV: covered vs. not covered
- IVs: demographics commonly used for weighting adjustments (age, gender, education, marital status, and urbanicity); survey variables of interest
- Results: two survey variables are significant predictors
  - Tablet use; eating out
  - Appear to fall under Groves's "survey variable cause" model

#### Nonresponse Errors



#### **Measurement Errors**



# Non-coverage errors not consistently offset by other sources of errors



### Summary so far

- Absolute non-coverage bias larger than absolute nonresponse or measurement biases - 2.4% vs. 1.7% vs. 1.4% on average
- Two survey variables directly related to noncoverage
- Other errors don't consistently offset it

# Estimating errors when phones are provided

- Coverage issues are (by definition) eliminated
  - But additional respondents using unfamiliar phones could inflate other errors
    - unwillingness to accept or use loaner phone may increase nonresponse error

# Subgroups (With Phones Provided)

|                                 | Old<br>Sample<br>Size | Old<br>Rate | New<br>Sample<br>Size | New<br>Rate |
|---------------------------------|-----------------------|-------------|-----------------------|-------------|
| Benchmark                       | 1180                  |             | 1180                  |             |
| Covered                         | 843                   | 71.4%       | 1180                  |             |
| Respond                         | 614                   | 72.8%       | 918                   | 77.8%       |
| Respond<br>(smartphone answers) | 614                   |             | 918                   |             |

#### No negative effect on nonresponse errors



Average absolute B<sub>nr</sub> old= 1.7%; Average absolute B<sub>nr</sub> new= 0.9%

24

#### Modest increase in measurement errors



Average B<sub>meas</sub> old= 1.4; Average B<sub>meas</sub> new= 1.8%

# As before, biases don't consistently cancel out



Average B<sub>total</sub> old= 3.4% ; **Average B<sub>total</sub> new= 1.9%** 

### Summary

- Large non-coverage error biases relative to other sources of error
  - Cannot be eliminated by weighting
    - Two survey variables directly related to non-coverage
  - Furthermore, non-coverage errors not consistently offset by other errors
- Suggests that limiting Web surveys to mobile Web users only is risky for general population surveys
- Unless phones are provided
  - Eliminates coverage issues without large effect on other sources of error

## **Remaining Questions**

- For this analysis:
  - Are bias estimates statistically significant?
    - Plan is to use bootstrapping to add confidence intervals around bias estimates
  - Present results for more survey variables
- For future work:
  - error in a cross sectional survey
  - mean square error (MSE)
  - weighting adjustments
- Biases have different causes. What are they?
  - E.g., are the observed measurement errors due to socially desirable reporting, satisficing, or what?

#### THANK YOU!