Quantifying Recall and Processing Error when Utilizing the Compendium of Physical Activities in Physical Activity Recall Surveys

Bryan Stanfill, Dave Osthus, Sarah Nusser

Center for Survey Statistics and Methodology, lowa State University

$$
\text { June 2, } 2013
$$

Outline

Physical Activity Surveys

Sources of Error

Preliminary Model

Results

Discussion

Physical Activity Surveys

- Physical activity researchers use surveys to assess physical activity level
- Physical Activity Propensity Questionnaire
- 24 -Hour Recall
- Additional information available: body mass index (BMI), age, income, etc.
- Interested in usual physical activity level
- Do not typically account for all error sources
- Research needed to understand energy expenditure error characteristics

PAMS

The Physical Activity Measurement Survey (PAMS) is a survey designed to obtain information on physical activity patterns of eligible adults.

Who's Eligible?

- 21-70 years of age
- Living in Dallas, Polk, Marshall, or Black Hawk county
- Not pregnant or lactating
- Can complete interview in either English or Spanish
- No physical limitations or medical restrictions preventing the adult from participating in physical activity
- Lives in household with a land line phone

Data Collection

Physical activity on two nonconsecutive days measured via SenseWear Monitor and Physical Activity Recall (PAR)

SenseWear Monitor

- Worn on arm for 24
consecutive hours
- Continuously measures motion, steps, skin temperature, etc.
- Proprietary algorithm converts measures into metabolic equivalent (MET)

- METs express energy cost as a multiple of resting metabolic heart rate
- METs translated into kcals according to resting energy expenditure (REE)

Example Monitor Data

1	STEPS	METS_per_minute	energy_expenditure	fileID	Year	Month	Day	Hour	Minute
2	0	1.27	1.44	1	2009	10	11	23	55
3	0	1.28	1.46	1	2009	10	11	23	56
4	13	1.68	1.90	1	2009	10	11	23	57
5	4	1.62	1.84	1	2009	10	11	23	58
6	4	1.70	1.93	1	2009	10	11	23	59
7	0	1.65	1.87	1	2009	10	12	0	0
8	11	1.81	2.06	1	2009	10	12	0	1
9	9	1.72	1.95	1	2009	10	12	0	2
10	0	1.75	1.99	1	2009	10	12	0	3
11	24	2.03	2.30	1	2009	10	12	0	4
12	6	1.88	2.14	1	2009	10	12	0	5
13	6	1.76	1.99	1	2009	10	12	0	6
14	28	1.96	2.22	1	2009	10	12	0	7
15	18	1.90	2.15	1	2009	10	12	0	8
16	9	1.76	2.00	1	2009	10	12	0	9
17	12	1.80	2.04	1	2009	10	12	0	10
18	25	1.90	2.15	1	2009	10	12	0	11
19	38	1.99	2.26	1	2009	10	12	0	12
20	19	1.97	2.23	1	2009	10	12	0	13
21	0	1.58	1.79	1	2009	10	12	0	14

PAR

- Interview conducted the day following armband wear
- Day partitioned into 6 hour segments (Midnight - 6:00 AM, 6:00 AM-noon, etc.)
- Individuals recall activities and duration of activities engaged in, rounded to the nearest 5 minutes
- Interviewer attaches a numeric code to each activity
- Codes link to the Compendium of Physical Activity
- Energy Expenditure (kcal) $=$ REE \times MET value \times Time

The Compendium

- First published in 1993, updated in 2000 and 2011
- Developed for epidemiologic studies to standardize MET intensities in physical activity questionnaires
- "MET values were assigned to each activity based on the 'best representation' of an intensity level from published lists and selected unpublished data." ${ }^{1}$

1993 Compendium		2000 Compendium		2011 Compendium	
Codes	METs	Codes	METs	Codes	METs

${ }^{1}$ Ainsworth et al. 2000

Compendium Limitation

"The values in the Compendium do not estimate the energy cost of physical activity in individuals in ways that account for differences in body mass, age, sex, efficiency of movement, etc. Thus, individual differences in energy expenditure for the same activity can be large and the true energy cost for an individual may or may not be close to the estimated mean MET level as presented in the Compendium." ${ }^{2}$

[^0]
Example PAR Data

- Activity: Carpentry
- MET value: 3 METs
- REE: 1.25 kcal
- Time: 60 minutes
- 225 kcals $=1.25 \times 3 \times 60$

Sources of Error

PAR implementation introduces multiple sources of error:

- Recall Error: The individual must accurately recall both the activities and the duration of the activities they engaged in the previous day
- Interviewer Error: The interviewer must assign the appropriate Compendium code to the described activity, includes coding error
- Processing Error: The MET value attached to the code in the Compendium may or may not be a reasonable representation of the individual's true MET value

Goal: Develop methodology to quantify these sources of error

Notation

$\mathbf{R}_{\mathrm{ijkt}}$: PAR measurement for person i, on day j, at time period t, administered by interviewer k
$\mathbf{M}_{\mathrm{ijt}}$: monitor measurement for person i, on day j, at time period t
$\mathrm{B}_{\mathrm{ijkt}}$: the ratio of PAR relative to monitor PA level, i.e. $R_{i j k t} / M_{i j t}$

$$
\begin{aligned}
& i \in\{1,2, \ldots, n\}, \quad j \in\left\{1, n_{i}\right\} \quad n_{i} \in\{1,2\} \quad t \in\{1,2,3,4\}, \\
& k \in\{1,2, \ldots, K\}
\end{aligned}
$$

Note: If $M_{i j t}$ is treated as a gold standard or reference measure, then $B_{i j k t}$ is the ratio of the noisy PAR measurement and "truth"

Example Data

Potential Explanations

$\mathbf{R}_{i j k t}<\mathbf{M}_{i j t}:$

1	CaseID	Replicate	TimeBlock	Code	Mets	Minutes	Description		
2324	11241	1	1	7030	0.9	300	sleeping		
2325	11241	1	1	13041	2	30	selfcare: dre	ressing/undressing,	grooming
2326	11241	1	1	16010	2	10	driving a car	or light truck	
2327	11241	1	1	16050	3	20	driving a he	eavy truck or tractor	
2328	11241	1	2	16050	3	180	driving a he	eavy truck or tractor	
2329	11241	1	2	13030	1.5	15	sit eating		
2330	11241	1	2	16050	3	135	driving a he	eavy truck or tractor	
2331	11241	1	2	13030	1.5		sit eating		
2332	11241	1	3	16050	3	90	driving a he	eavy truck or tractor	
2333	11241	1	3	13030	1.5	15	sit eating		
2334	11241	1	3	16050	3	40	driving a he	eavy truck or tractor	

$\mathbf{R}_{i j k t}>\mathbf{M}_{i j t}:$

Data Summary

- 10282 observations on 1337 individuals
- 564 Males and 773 Females

Variable	Min.	Median	Mean	Max	SD
Age	21	51	50	71	7
BMI	15	29	31	73	12

- Consider the log-scale ratio: $b_{i j k t}=\log \left(r_{i j k t} / m_{i j t}\right)$

Preliminary Model

$$
b_{i j k t}=\mathbf{z}_{i j t}^{\prime} \boldsymbol{\beta}+\phi_{0 i}+\phi_{1 i} l_{j=2}+\gamma_{k}+\epsilon_{i j k t}
$$

Data:

$b_{i j k t}$: observed log-ratio of monitor/recall for individual i, day j, interviewer k, time t
$\mathbf{z}_{i j t}$: covariate vector for person i, day j, time t

Parameters:

$\boldsymbol{\beta}$: covariate parameter vector (compendium bias)
$\phi_{i} \stackrel{i i d}{\sim} N_{2}\left(\mathbf{0},\left(\begin{array}{cc}\sigma_{0}^{2} & \sigma_{01} \\ \sigma_{01} & \sigma_{1}^{2}\end{array}\right)\right):$ person random effect vector (recall error)
$\gamma_{k} \stackrel{i i d}{\sim} N\left(0, \sigma_{\gamma}^{2}\right)$: interviewer random effect (interviewer error)
$\epsilon_{i j k t} \stackrel{i i d}{\sim} N\left(0, \sigma_{\epsilon}^{2}\right):$ remaining noise (processing error)

Model Variance Structure

$$
b_{i j k t}=\mathbf{z}_{i j t}^{\prime} \boldsymbol{\beta}+\phi_{0 i}+\phi_{1 i} I_{j=2}+\gamma_{k}+\epsilon_{i j k t}
$$

$\operatorname{Var}\left(\begin{array}{l}b_{1111} \\ b_{1112} \\ b_{1211} \\ b_{1212}\end{array}\right)=$

$$
\left(\begin{array}{cc}
\sigma_{0}^{2}+\sigma_{\gamma}^{2}+\sigma_{\epsilon}^{2} & \sigma_{0}^{2}+\sigma_{\gamma}^{2} \\
& \sigma_{0}^{2}+\sigma_{\gamma}^{2}+\sigma_{\epsilon}^{2}
\end{array}\right.
$$

$$
\left.\begin{array}{cc}
\sigma_{0}^{2}+\sigma_{01}+\sigma_{\gamma}^{2} & \sigma_{0}^{2}+\sigma_{01}+\sigma_{\gamma}^{2} \\
\sigma_{0}^{2}+\sigma_{01}+\sigma_{\gamma}^{2} & \sigma_{0}^{2}+\sigma_{01}+\sigma_{\gamma}^{2} \\
\sigma_{0}^{2}+\sigma_{1}^{2}+2 \sigma_{01}+\sigma_{\gamma}^{2}+\sigma_{\epsilon}^{2} & \sigma_{0}^{2}+\sigma_{1}^{2}+2 \sigma_{01}+\sigma_{\gamma}^{2} \\
& \sigma_{0}^{2}+\sigma_{1}^{2}+2 \sigma_{01}+\sigma_{\gamma}^{2}+\sigma_{\epsilon}^{2}
\end{array}\right)
$$

Symm.
$\phi_{i}, \gamma_{k}, \epsilon_{i j k t}$ all independent

Results

Fixed Effects:

Parameter	Estimate	(SE)	Sources of Error:		
Intercept	-0.5711	(0.0721)			
Age	-0.0017	(0.0010)	Source		Estimate
BMI	0.0114	(0.0014)			Estimate
Male	-0.1188	(0.0242)	Recall Recall-Day 2	σ_{0}^{2}	0.1847 0.0111
Time 2	0.3407	(0.0409)		σ_{01}	0.0111 -0.0229
Time 3	0.3998	(0.0409)	Interviewer Processing	$\sigma^{\sigma_{01}}$	0.0080
Time 4	0.3162	(0.0410)		σ_{γ}^{2} σ_{ϵ}^{2}	0.1253
Time $2 \times$ Age	0.0054	(0.0008)			
Time $3 \times$ Age	0.0054	(0.0008)			
Time $4 \times$ Age	0.0015	(0.0008)			

Known Issues \& Future Work

- $M_{i j t}$ is itself a noisy estimate of true physical activity, not even necessarily unbiased
- Incorporate measurement error ideas to relax assumptions on $M_{i j t}$ and calibrate $R_{i j k t}$
- What is the interpretation of $\mathbf{z}_{i j t}^{\prime} \boldsymbol{\beta}$? Compendium bias or something more?
- What is the interpretation of $\epsilon_{i j k t}$? It isn't just processing error, but we may have to treat it as if it were.

Thanks \& Funding

- Professors Nusser \& Fuller
- Jan Larson, SBRS
- Professor Welk \& Youngwon Kim, Department of Kinesiology
- The PAMS study was funded by a NIH grant awarded to Dr. Greg Welk, Dr. Sarah Nusser and Dr. Alicia Carriquiry (R01 HL91024-01A1) titled "A Measurement Error Approach to Estimating Usual Daily Physical Activity Distributions".

[^0]: ${ }^{2}$ Taken from http://prevention.sph.sc.edu/tools/compendium.html

