

Measurement errors in panel surveys, evaluation of Markov Quasi-Simplex and Markov Latent Class models

2014 International Total Survey Error Workshop 2014-10-02

Pär Karlsson, MSc <u>(par.karlsson@scb.se)</u> Statistics Sweden

Content

- Statistical models
 - Markov quasi-simplex
 - Markov latent class
- Examples
- First results
- Second look at the data
- Conclusions

Measurement errors in panel surveys

- If the same object is measured at least three times and the change of the object follows a Markovprocess, then aspects of the measurement process can be estimated
- Markov Quasi-Simplex for continuous data
- Markov Latent Class models for categorical data
- Common:
 - The true unobserved value is modelled as a latent variable
 - Changes follows a Markov process
 - Measurement errors are independent

Markov Quasi-Simplex Model, continuous data

Statistics Sweden

Statistiska centralbyrån

Markov Latent Class Model, categorical data

The data could be fitted to the model with 6 degrees of Freedom

Assumptions:

First order Markov property, i.e. the state a person is in at time t, can only depend on the state it is in at time t-1. Same classification probabilities at each time.

The classifications of a person at two time points are independent.

Example 1: invoice value of arrivals and of dispatches within the European Union (Intrastat)

- Cut-off survey, including all enterprises with a total value of commodities dispatched from Sweden of more than 4.5 million SEK or with a total value of commodities arrived to Sweden of more than 4.5 million SEK
- The survey collects monthly the value and volume at commodity level

- The primary variables for this presentation is the total monthly values of each enterprise for dispatches and arrivals, respectively, summed over all commodities
- A Markov quasi-simplex model over three time points was used to estimate the reliability
- A log-transform of the total values was used

Example 2: Short-Term Employment Survey (STES)

- Stratified simple random sample. Stratification based on industry and size
- The sample size is roughly 19 000 enterprises within both the private and the public sector
- All larger enterprises and the public sector are included in the sample. This group contributes data every month
- other enterprises in the sample contribute data for every third month
- A selected enterprise might stay in the survey for several years

Example 2: Method

- The primary variables for this presentation is the total number of Permanent and Temporary employees
- A quasi-simplex model over three time points was used to estimate the reliability
- A log-transform of the total number of employees was used

Example 3: Swedish labor force survey (LFS)

- Stratified systematic sample with rotating panel samples. Stratified by region and gender, within strata individuals are sorted by country of birth and date of birth
- Age range 15-74
- Sample size 29 500
- Each individual is interviewed, by telephone, every third month during two years (8 interviews per individual)

Example 3: Method

- The primary variable for this presentation is the labor force status, which is a categorical variable taking 3 values: Employed (E), Unemployed (U), and Not in labor force (N)
- Markov Latent Class Analyses were used to estimate the classification probabilities
 - Probability that a person with true status X is classified as status Y

Measurements in LFS

Time points in models

Three time points one month apartNot possible in LFS,
only for subset of enterprises in STESMonths:J F M A M J J A S O N D J F M A M J J A S O N D

Three time points three months apart

Months:

JFMAMJJASONDJFMAMJJASONDJFMAMJJASOND

Three time points six months apart

Months:

JFMAMJJASONDJFMAMJJASONDJFMAMJJASONDJFMAMJJASOND

Three time points twelve months apart

Months: JFMAMJJASONDJFMAMJJASONDJFMAMJJASONDJ

FIRST RESULTS

Intrastat: Arrivals and Dispatches

Estimated reliability for the logarithm of invoce value

Time distance in estimator=3

 There are drops in the estimated reliability in July and December

STES: Permanent employees Before and after editing process

Estimated reliability for Short-term employment survey Comparison before (raw data) and after (clean data) editing

Transformation=Log(Count) Variable=Permanent employees Time distance in estimator=3

STES: Temporary employees Before and after editing process

Estimated reliability for Short-term employment survey Comparison before (raw data) and after (clean data) editing

Transformation=Log(Count) Variable=Temporary employees Time distance in estimator=3

- The estimated reliability was higher for data that had undergone the normal editing process compared to the raw uncorrected data
- There are drops in the estimated reliability in July

LFS: Probability to classify an unemployed person as unemployed

Weighted data, 1st order markov; time homogeneous classification probabilities

There is a 12 months cycles are present

A SECOND LOOK

Intrastat – VAT values

Reliabilitet för logaritmen av kontrolluppgifter (tidsavständ = 1 månad)

Varufläde 😌 😌 Export 🕹 🕹 & Import

Reliabilitetstal visas endast om data finns för minst 50 företag

- The VAT values reported has similar estimated reliability as the values derived from the invoices
- The VAT could be regarded as close to the true value

Intrastat – time distance 3 months

Dispatches

Direction of commodity flow Arrivals

Estimated reliability for the logarithm of invoce value

Intrastat – time distance 6 months

Estimated reliability for the logarithm of invoce value

Time distance in estimator=6

Intrastat – time distance 12 months

Estimated reliability for the logarithm of invoce value

Time distance in estimator=12

- The estimated reliability with 6 months time differences is lower than an estimate with 3 months difference
- The estimated reliability with 12 months time differences does not exhibit the "drops" and are about the same magnitude as the 3 months difference
- Suggests that there are within object variability that is not captured by the autoregressive process
- The model would then underestimate the true reliability

STES – Permanent employees 3, 6, and 12 months apart

Estimated reliability for Short-term employment survey Comparison of estimates based on different time spans

Transformation=Log(Count) Variable=Permanent employees Data status=Clean

STES – Temporary employees 3, 6, and 12 months apart

Estimated reliability for Short-term employment survey Comparison of estimates based on different time spans

Transformation=Log(Count) Variable=Temporary employees Data status=Clean

- Nothing happens with the permanent employees, so the reliability could be regarded as almost 1
- Temporary employees, there is a seasonal pattern, which disappears in the 12 months curve
- Thus, the model could adjust for seasonal effects,
- but look at the drop 2009, which might be due to a recession. In order for the model to adjust for an economic cycle we would need data for at least two complete cycles

Statistics Sweden

Statistiska centralbyrån

LFS: Comparison with a reinterview study

Results from LFS reinterview study

Data from LFS (Dec12, Mar13, Jun13)

	Obs. EMP	Obs. UNE	Obs. NLF		Obs. EMP	Obs. UNE	Obs. NLF
True EMP	0.986	0.004	0.010	True EMP	0.991	0.006	0.004
True UNE	0.044	0.866	0.088	True UNE	0.036	0.858	0.107
True NLF	0.003	0.003	0.994	True NLF	0.003	0.009	0.988

The transition probabilities from time 1 to time 2 might be different from the transition probabilities from time 2 to time 3. The classification probabilities are the same at the three time points.

Assumptions:

First order Markov property, i.e. the state a person is in at time 3 depend on the state it was in at time 2 but not the state it was in time 1.

The classifications of a person at two time points are independent.

The classification probabilities are similar to the reinterview study

Statistics Sweden Statistiska centralbyrån

LFS: Weighted data, 1st order markov; time homogeneous classification probabilities

Statistics Sweden Statistiska centralbyrån

LFS: Weighted data, 2nd order markov; time homogeneous classification probabilities

- A second order markov latent class model fits the data better, and gives higher classification probabilities for classifying an unemployed as unemployed
- Still there is a visible 12 months cycle

SCB

Statistics Sweden

Statistiska centralbyrån

LFS: 3 periods Mover stayer model Probability to correct classify an unemployed

LFS: 3 periods Mover stayer model Estimated fraction stayer

Statistics Sweden Statistiska centralbyrån

LFS: 4 periods 1st Markov Mover stayer model Probability to correct classify an unemployed

Statistics Sweden Statistiska centralbyrån

LFS: 4 periods 1st Markov Mover stayer model Estimated fraction stayer

 At least 4 time period are needed in order to stabilize the estimation of the mover stayer model

Conclusions

- The Markov quasi-simplex model could pick up an effect of editing
- The Markov quasi-simplex model is sensitive to
 - seasonal effects
 - extra within object variability
- A simple three time points Markov latent class model did not fit the labor status data. A mover stayer model over 4 time points seems better