Introduction	Methods	Results	Conclusion
	00000	0000000	0000

Bayesian Data Editing for Continuous Microdata

Alan F. Karr RTI International

(with L. H. Cox, H. Kim, J. P. Reiter, Q.Wang)

ITSEW 2014, Washington October 3, 2014

Introduction	Methods	Conclusion
00000		
Summary		

Problem Statement

Setting Numerical microdata that may be

- Missing
- Erroneous

Dataset of Interest U.S. Census Bureau's every-five-years Census of Manufactures (CM)

Goal Simultaneously (and multiply) impute edit constraint-satisfying replacements for *both* missing values and erroneous values

Impact

- Improve data quality
- Reduce cost: editing is estimated to consume 20–40% of survey costs

Introduction	Methods	Results	Conclusion
•••••	00000	000000	0000
Background			

Notation

- i =subject
- j = numerical attribute
- $X_i(j)$ = "true" value of attribute *j* for subject *i*
- $Y_i(j)$ = reported value of attribute *j* for subject *i*
- $S_i(j)$ = binary error indicator for attribute *j* for subject *i*
 - Conceptually, $S_i(j) = \mathbf{1}(Y_i(j) \neq X_i(j))$
 - *Operationally*, $S_i(j) = 1$ means that a replacement will be imputed for $Y_i(j)$

Introduction	Methods	Results	Conclusion
	00000	0000000	0000
Background			

Classes of Edit Constraints

Range Constraints $L(j) \le Y_i(j) \le U(j)$

Ratio Constraints $Y_i(j)/Y_i(\ell) \le \alpha_{j,\ell}$ (better as $Y_i(j) \le \alpha_{j,\ell}Y_i(\ell)$)

Balance Constraints $Y_i(j_1) + Y_i(j_2) + \dots + Y_i(j_\ell) = Y_i(j_m)$

Compatibility Constraints (usually only for categorical data): $Y_i(j_1) = y_1$ and $Y_i(j_2) = y_2$ are incompatible

Introduction	Methods	Results	Conclusion
	00000	0000000	0000
Background			

Two Steps in Automated Data Editing

Error Localization Determine (estimate) $S_i(j)$

• Multiple approaches, discussed momentarily

Error Correction Determine (calculate) replacement values for those $Y_i(j)$ for which $S_i(j) = 1$

- Generally, some form of imputation
- Violations of balance edits sometimes resolved by definition (not always a good idea)

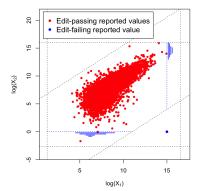
Introduction	Methods	Results	Conclusion
○○○○●	00000	0000000	0000
Plan			

This Talk: Compare Three Methods

Fellegi-Holt (FH) (JASA, 1976)

- Error Localization: Use optimization algorithm to determine [weighted] minimum number of attributes to impute
- Error Correction: Historically, hot deck or In this talk, constraint-preserving imputation algorithm of Kim, et al. (*JBES*, 2014, to appear)

Flag All Active Items (AAI)


- Error Localization: Flag every $Y_i(j)$ that is involved in an edit violation
- Error Correction: Constraint-preserving imputation algorithm of Kim, et al.

Bayesian Editing (BE) Integrate localization and correction

Introduction	Methods	Results	Conclusion
00000	●○○○○	0000000	0000
FH			

What's Wrong with Fellegi-Holt

 Have to enumerate all implied constraints (otherwise can't be sure that minimization has been achieved)

2

	Methods	Conclusion
	0000	
AAI and BE		

Structure of the BE Model

More Notation

- X = feasible region defined by range and ratio constraints
- T =set of variables that are not "sums" in balance constraints
- $A_i \in \{0, 1, 2, 3\} =$ "nature of errors" indicator for subject *i*

Model for $\{X_i(j) : j \in T\}$ Mixed multivariate normal restricted to \mathcal{X} : parameters K, μ_k , Σ_k , π

Model for π Dirichlet process (stick-breaking representation)

Model for $\{X_i(j) : j \notin T\}$ Equal to sum of components

Introduction 00000	Methods ○○●○○	Results 0000000	Conclusion 0000
AAI and BE			

Model Structure—2

Model for $A_i | X_i$ May involve parameters ψ , but $f(a | x, \psi) \propto 1$

Model for $S_i|(X_i, A_i)$ May involve parameters ψ , but $f(s|x, a, \psi) \propto 1$

Model for $Y_i|(X_i, S_i) E_i = \{j : S_i(j) = 1\}$ (erroneous components)

•
$$S_i(j) = 0 \Rightarrow Y_i(j) = X_i(j)$$

• $Y_i(E_i)$ uniform on (subset of bounding hypercube) $\setminus \mathcal{X}$

Model for Missingness At the moment, MAR

•
$$Y_i(j)$$
 missing $\Rightarrow S_i(j) = *$

Priors The standard noninformative choices

Introduction	Methods	Results	Conclusion
00000	○○○●○	0000000	0000
AAI and BE			

BIG Inference Assumptions

AAI and BE $Y_i \in \mathcal{X} \Rightarrow S_i = 0$

- Tempting interpretation: $Y_i \in \mathcal{X} \Rightarrow X_i = Y_i$
- Safer interpretation: If $Y_i \in \mathcal{X}$, no basis for changing it

AAI $Y_i(j)$ involved in an edit violation $\Rightarrow S_i(j) = 1$

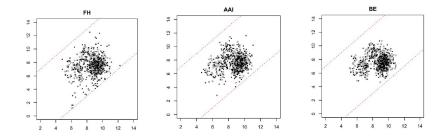
Introduction 00000	Methods 0000	Results 000000	Conclusion 0000
AAI and BE			
The MCMC			

- Gibbs update for all but a few steps
- Data augmentation techniques to ease estimation of truncated normal distributions (O'Malley and Zaslavsky, *JASA*, 2008)
- Simultaneously draw imputed values *X* and editing indicators *S*
 - Propose *S*^{*} from neighbors of current *S* using birth-death process
 - **2** Generate X^* given S^* from constrained mixture of normals
 - Solution Accept/reject (X^*, S^*) by Metropolis-Hastings

Introduction	Methods	Results	Conclusion
00000	00000	•000000	0000
Simulation			

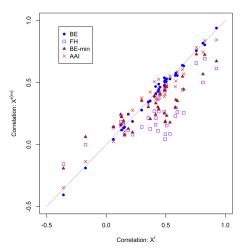
Structure

- 9 variables
 - Range constraints for every variable
 - Ratio constraints for some pairs of variables
 - Two balance constraints: X(4) = X(1) + X(2) + X(3) and X(7) = X(5) + X(6)
- n = 2000 error-free values of


 $(X_i(1), X_i(2), X_i(3), X_i(5), X_i(6), X_i(8), X_i(9))$

from mixture of normals; calculate $X_i(4)$ and $X_i(7)$ from balance constraints

- For 1000 out of 2000 records, introduce edit-failing records using model (so no mis-specification)
- 5% missingness, CAR
- 500 simulations


Introduction	Methods	Results	Conclusion
00000	00000	000000	0000
Simulation			

Pictorial Results: Data

Introduction	Methods	Results	Conclusion
00000	00000	000000	0000
Simulation			

Pictorial Results: Correlations

Simulation

Methods 00000 Results

Conclusion 0000

Numerical Results: 95% CI Coverage for Population Means

Variable	True X	E-P <i>X</i>	True S	FH	AAI	BE
<i>X</i> (1)	95.2	95.4	96.2	90.0	96.2	95.8
<i>X</i> (2)	93.0	95.4	95.6	6.4	97.0	95.4
<i>X</i> (3)	94.4	95.6	94.0	95.2	97.6	96.2
<i>X</i> (4)	93.4	93.0	94.6	96.6	94.8	95.2
<i>X</i> (5)	93.8	94.0	94.4	0.0	93.4	92.4
<i>X</i> (6)	94.8	94.2	93.8	0.8	97.8	93.0
<i>X</i> (7)	94.8	94.4	94.2	10.8	94.4	92.2
<i>X</i> (8)	95.0	95.6	94.6	96.6	95.8	93.8
<i>X</i> (9)	95.6	92.2	96.4	67.0	94.0	95.4

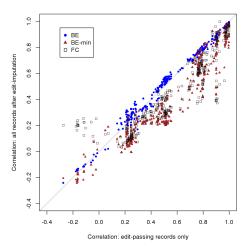
Introduction	Methods	Results	Conclusion
00000	00000	0000●00	0000
Simulation			

Numerical Results: Relative Bias for Regression Coefficients

Model $X_i(9) = \beta(0) + \beta(1)X_i(1) + \beta(5)X_i(5) + \beta(9)X_i(9) + \varepsilon_i$

Variable	True X	E-P <i>X</i>	True S	FH	AAI	BE
$\beta(0)$	0.2	0.1	0.3	-2.6	-1.8	0.9
$\beta(1)$	-0.8	-1.6	-0.3	51.7	10.3	-2.9
$\beta(5)$	0.0	0.4	0.3	-41.6	-3.3	1.7
β(9)	0.2	0.5	-0.3	-0.4	-2.2	-0.4

Relative Bias =
$$\frac{1}{|Q|} \left(\frac{1}{R} \sum_{r=1}^{R} \hat{Q}_r - Q \right)$$


Introduction 00000	Methods 00000	Results ○○○○○●○	Conclusion 0000
СМ			
Basics			

- Part of Economic Census (most recent data: 2007)
- Example attributes: (logs of) cost of materials, total employment, total value of shipments, ... (so linear regressions are Cobb-Douglas production functions)
- Industry-specific ratio and balance constraints
- Current method: combination of manual and FH + hot deck (SPEER), labeled FC (Final Census)

Our Study One NAICS code, 1869 establishments, 27 variables, Title 13-protected (so worked in RDC)

	Methods	Results	Conclusion
		000000	
CM			

Pictorial Results: Correlations

Introduction	Methods	Results	Conclusion
00000	00000	0000000	
AAI vs. BE			

AAI or BE?

Criterion	Winner
Specification of constraints	Tie
Intellectual appeal	BE: borrows more strength
"Right" amount of imputation	BE
Incorporate domain knowledge of errors	BE: prior on S
Estimated distribution of S	BE: posterior distribution
Bayes "shock factor"	AAI
Computational burden	AAI: 10× speed
Information about measurement error	Neither

	Methods	Conclusion
		0000
Some Questions		

Unresolved Issues: Specific

- What are the effects of model mis-specification?
- What are the tradeoffs between record-level correctness and inferential correctness?
- Should the same imputation model be used for both missing and erroneous data?
- What about weights?

Introduction 00000	Methods 00000	Results 000000	Conclusion 0000
Some Questions			

Unresolved Issues: Broad

- What if administrative data are available?
- Do we need a taxonomy for erroneousness: erroneous completely at random, at random, non-ignorably?
- So What difference would it make to have a (good) measurement error model?
- Can we integrate edit, imputation and disclosure limitation?

Introduction	Methods	Results	Conclusion
00000	00000	0000000	
Details			

Acknowledgements and More Information

Support NSF grant SES-1131897

Technical Report Kim, Cox, Karr, Reiter, Wang, "Simultaneous Edit-Imputation for Continuous Microdata," NISS Technical Report 189: http://www.niss.org/sites/default/files/tr189.pdf (submitted to *JASA*)

Contact Information karr@rti.org