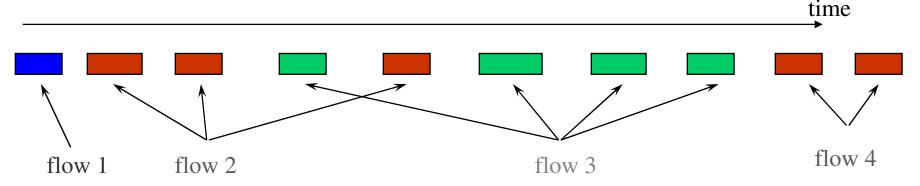
Inference of Flow Properties from Sampled Packet Streams

Nick Duffield, Carsten Lund, Mikkel Thorup

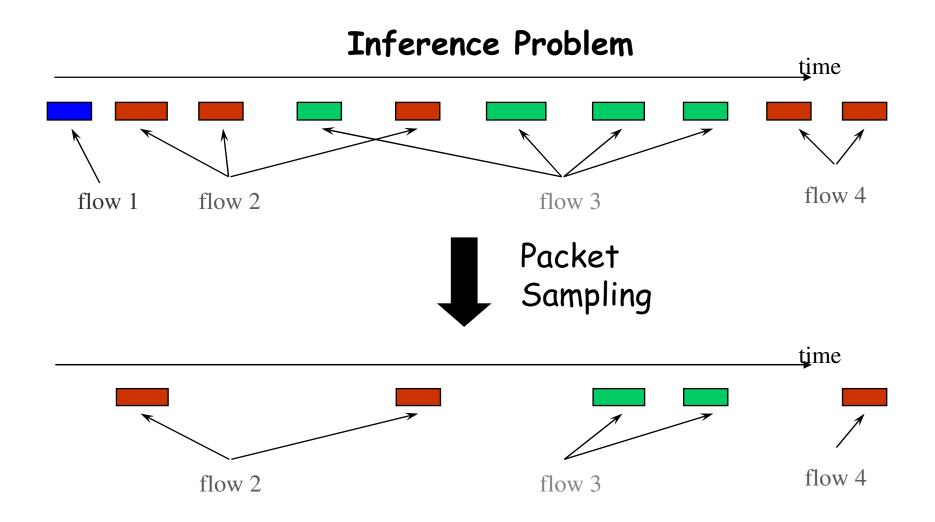

AT&T Labs Research, Florham Park

http://www.research.att.com/projects/flowsamp

General Setting

- ☐ Traffic measurements increasingly have to be sampled
 - + Resource constraints under ever-increasing traffic speed, volumes
- ☐ Measurement-based measurement applications
 - + Increasingly need detailed traffic properties:
 - resource usage differentiated by traffic class
 - traffic characteristics, composition
 - anomaly detection
 - spatial and temporal correlation of measurements
- ☐ Problem
 - + How can these applications work effectively with sampled data?
- ☐ This talk:
 - + inference of some properties of traffic flow statistics from samples

Internet Traffic Flow Statistics


- ☐ Measured Internet flows
 - + set of packets with common property, observed in some time period
- ☐ Common property
 - + "key": built from header fields (e.g. src/dst address, TCP/UDP ports)
- ☐ Flow termination criteria
 - + interpacket timeout
 - + protocol signals (e.g. TCP FIN)
 - + ageing, flushing, ...
- ☐ Flow summaries
 - + reports of measured flows exported from routers
 - + flow key, flow packets/bytes, first/last packet time, router state
- Measured flow semantics
 - + artificial, may capture appl. transactions if good start/termination criteria

Need to Understand Detailed Flow Statistics

- ☐ Resource requirements in routers
 - + number of concurrently active flows
- □ Resource requirements in measurement infrastructure
 - + rate of production of flow statistics
- ☐ Traffic characterization
 - + packet/byte rate of original traffic
 - + rate of occurrence of original flows
 - + average packet/bytes per original flow

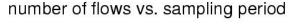
The Need for Packet Sampling at Router

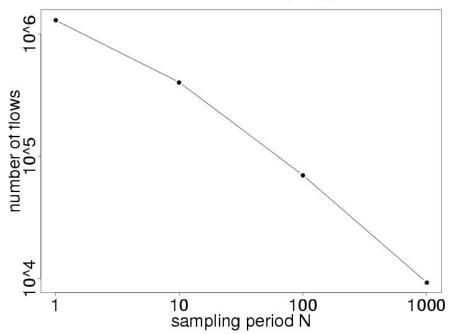
- ☐ Keep cache of active flows
 - + for keys seen, but corresponding flow not yet terminated
- □ Packet classification
 - + each arriving packet: cache lookup to match key
 - · if match: modify cache entry, e.g., increment counters, adjust timers
 - else: instantiate new cache entry
- □ Cache resources for high end routers
 - + memory: 1,000s of flows active simultaneously
 - + speed: look up at line rate
 - + hence cost: need lots of fast memory
- □ Packet sampling
 - + form flows from sampled packet stream (e.g. 1 in N periodic)
 - will call these "packet sampled flows"
 - + reduce effective packet rate
 - + save cost: slower memory sufficient

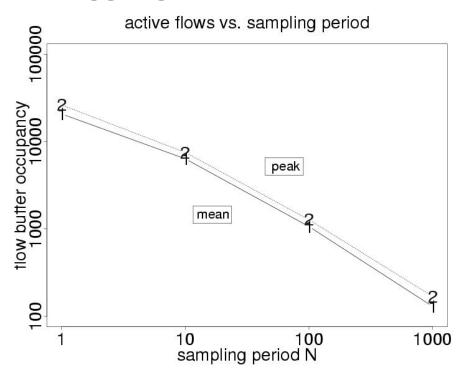
How to infer flow properties of **original** packet stream from flows of the **sampled** packet stream?

Program

- □ Compare properties of packet sampled flows and original flows
 - + rate of production of flow statistics
 - + number of concurrently active flows
 - + dependence on sampling rate, interpacket timeout
- □ Modeling, analysis, prediction
 - + of packet sampled flow statistics, given original flows
- ☐ Inversion and Inference
 - + recover properties of original flows
 - + from packet sampled flow statistics

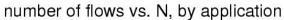

Resource Requirements:

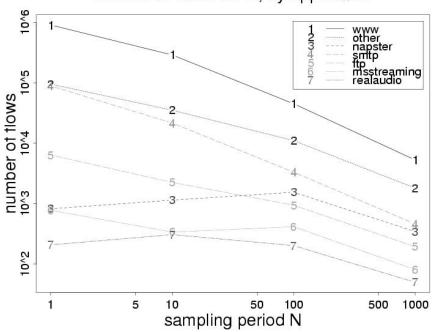

Experiments

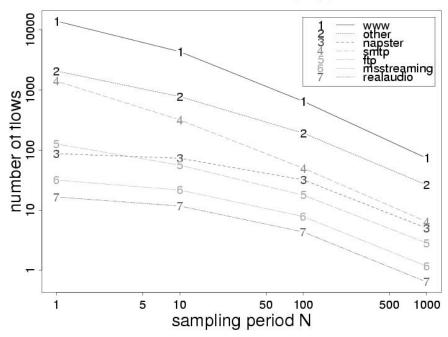

Resource requirements: experiments

- ☐ Packet header trace
- ☐ Sample periodically 1 in N
 - + call N the Sampling Period
- ☐ Form flow statistics
 - + key = src/dst IP address + src/dst TCP/UDP port numbers
 - + flow termination: interpacket timeout T
 - + flow semantics
 - protocol based termination would be supressed under sampling
 - + flow statistics
 - per flow: packets, bytes, duration
- Sensitivity
 - + flow statistics almost insensitive to details of sampling process
 - compared 1 in N periodic, independent with probability 1/N
 - difference noticeable (barely) only if #active flows < N

Rate and #active flows: aggregate traffic






- Broad features
 - rate and #active flows decreasing,
 - expect eventually proportional to 1/N
 - probability to at least one of p packets \approx p/N for large N
- Details vary from trace to trace
 - + need to understand dependence on traffic constituents

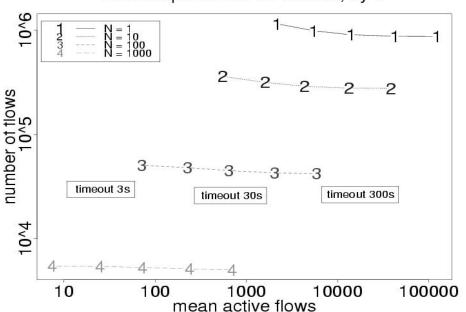
Rate and #active flows: by application

mean active flows vs. N, by application

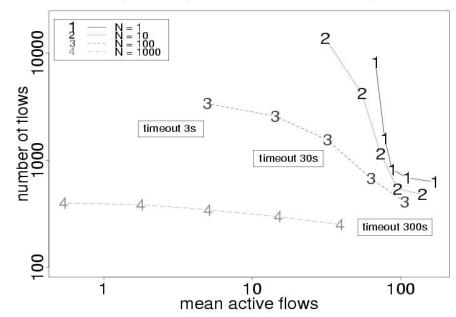
- ☐ Application identified by port number (well-known ports + custom)
- □ Rate of flow production
 - + can increase with N for some applications, eventually decreasing
 - napster, ms-streaming, realaudio
- Mean active flows
 - + decreasing with N, although slower for some applications: napster

Flow splitting under sampling

Single flow


Interpacket timeout T

Can become multiple flows under sampling


- □ Sampling increases interpacket times
- ☐ Flow splitting when interpacket time exceed interpacket timeout
- ☐ Flows vulnerable to splitting: call these **sparse**
 - + flows with many packets, not too fast packet rate
 - · e.g. streaming, p2p applications
- Question
 - + if increase T, as N increases: can we better maintain flow semantics?

Rates and #active flows: trade-offs

www: dependence on timeout, by N

napster: dependence on timeout, by N

- □ Trade off: increase timeout T:
 - + potentially less splitting: fewer measured flows, more active flows
- □ Left: non-sparse application (www: mean flow length 6 packets)
 - + little flow splitting in any case
 - + if larger T: roughly linear increase in active flows, flow rate roughly unchanged
- □ Right: sparse application (napster: mean flow length 455 packets)
 - + smaller N: big trade off between rate and #active flows
 - + larger N: trade-off washes out (typically only 1 packet sampled)

Sparseness and Flow Splitting: Modeling

Make model of flow splitting

- Motivation
 - + No simple black box model of rate and #active flows
 - based on just aggregate traffic rates, N, T
- ☐ Idea:
 - + starting with set of original flow statistics
 - (n_i packets , b_i bytes , t_i duration) for flows i = 1,2,..., m, over duration D
 - from trace of collected flow statistics, or statistical model
 - + use model to predict, given sampling period N, interpacket timeout T
 - mean rate of production of flow statistics
 - mean # concurrently active flows

Model of flow splitting: flow production rate

- □ Rough conditions for splitting of flow (n,b,t)
 - → mean time between sampled packets exceeds timeout:
 - N t/(n-1) > T
 - + more than one sampled packet on average
 - n/N > 1
 - + say flow is sparse if both conditions hold
- ☐ Simple model: assume constant spacing of sampled packets
- Number of flows produced:
 - + if sparse, expectation of n/N single packet flows
 - + else get 1 flow
 - with probability 1 if n > N (multi packet flow)
 - with probability n/N if n < N (single packet flow)
- \square Wrap together: expect f(n,t;N,T) flows on average,
 - + f(n,t;N,T) = 1 if $(n-1)T \ge Nt$ = n/N otherwise
- \square Estimate flow production rate: $F = \Sigma_i f(n_i, t_i; N, T) / D$

Model of flow splitting: #concurrently active flows

- ☐ Active duration:
 - + if sparse, get n/N single packet flows,
 - each has cache open for duration T
 - total active time Tn/N
 - + else get 1 flow
 - with probability 1 if n > N (multi packet flow)
 - expected active time T + time between first and last sampled packets
 - T + t(n-N)/(n-1)
 - with probability n/N if n < N (single packet flow)
 - expected active time Tn/N
- \square Wrap together: total average active time a(n,t;N,T)
 - + a(n,t;N,T) = T + t(n-N)/(n-1) if (n-1)T ≥ Nt= Tn/N otherwise
- ☐ Estimate mean # concurrently active flows
 - + total active time / duration D
 - + $A = \Sigma_i \alpha(n_i, t_i; N, T) /D$

Accuracy of prediction from model

- □ Compare
 - + prediction: apply model to flow statistics of original traffic stream
 - + experiment: form measured flows from sampled packet stream
- □ Ratios: predicted/experiment
 - + flow production rate

	Ν	10	100	1,000	10,000
Т					
1		1.22	1.15	1.04	1.00
10		1.21	1.13	1.13	1.02
100)	1.23	1.10	1.10	1.09
1,00	00	1.23	1.08	1.10	1.06

mean #concurrently active flows

N	10	100	1,000	10,000
Т				
1	1.18	1.08	1.01	1.00
10	1.21	1.13	1.08	1.01
100	1.23	1.11	1.10	1.05
1,000	1.23	1.09	1.10	1.05

- + good, but better agreement for largest N (exceeding most flow lengths)
 - · typically only one packet typically sampled, regardless of sampling details
- More complex model available:
 - + flow packets independently distributed over flow duration
 - + uniformly better agreement with experiment

Do we really need to model sparseness?

- ☐ Yes! Compare with model with no splitting
- □ Ratios: predicted/experiment
 - + flow prediction rate

	Ν	10	100	1,000	10,000
Т					
1		0.89	0.66	0.64	0.73
10		1.08	0.79	0.65	0.69
100)	1.17	0.96	0.86	0.77
1,00	00	1.23	1.04	1.01	1.00

mean #concurrently active flows

	Ν	10	100	1,000	10,000
[]					
1		1.40	4.24	13.3	57.4
1	0	1.31	2.23	7.10	14.5
1	00	1.43	1.99	2.53	2.82
1	,000	1.25	1.19	1.24	1.18

- + generally worse agreement that with sparseness modeled
- + particularly bad for #active flows, large N
- ☐ If splitting ignored:
 - + underestimate rate of flow production (fewer measured flows)
 - overestimate # concurrently active flows (ignore inactive time between split flows)

Inferring original flow statistics from packet sampled flow statistics

Characteristics of Interest

- Motivation
 - + assume only packet sampled flow statistics are available
 - + want to determine characteristics of original flows
- ☐ Which characteristics?
 - + original packet/byte rates
 - + arrival rate of original flows
 - + average packets and bytes per original flow
- ☐ Why might this be difficult?
 - + some original flows are missed altogether: no packets sampled
- ☐ Trick:
 - + supplement with protocol level information, when available

Some easy estimates: usage

- □ Network usage: packet an/or bytes in original packet stream
 - + or differentiated per traffic class
- □ Model: packets independently sampled with probability 1/N
- ☐ Estimates:
 - + # original packets P by $P_{est} = N * # sampled packets$
 - + # original bytes B by $B_{est} = N * # sampled bytes$
- ☐ Properties (Bernoulli sampling):
 - + unbiased estimators: $E[P_{est}] = P$; $E[B_{est}] = B$
 - + standard error bounds
 - packets: $std_dev(P_{est})/P \le sqrt(N/P)$
 - bytes: $std_dev(B_{est})/B \le b_{max}/b_{av}$. sqrt(N/B)
 - b_{max} = maximum packet size
 - b_{av} = average packet size

Estimating number of original TCP flows

- ☐ How to estimate number M of original TCP flows?
- ☐ Use trick for TCP flows reported by Cisco NetFlow
 - + packets of TCP connection carry flags (bits) for control
 - + first packet of a TCP connection carries the SYN flag
 - + flow statistics include cumulative OR of its packets' code bits
 - + hence can tell whether TCP flags were set in at least one flow packet
- ☐ Model (SYN flags in TCP flows are well-behaved)
 - + each original TCP flow contains exactly one SYN packet
 - expect close adherence to model, modulo retransmits, packet drops
 - · experiments
 - long flow traces: very rare for flow to have no SYN packet
- ☐ Estimation
 - + each SYN packet sampled with probability 1/N
 - + estimate: M₁ = N * #{sampled flows with SYN flag set}
 - → properties: unbiased estimator of M = #{original TCP flows}
 - under the model assumptions

Estimating number of original TCP flows (2)

- \square Estimator M_1 : uses only sampled SYN flows
- □ Decrease estimator variance by using all flow statistics?
- \square Basis: estimate number of flows M_0 that were not sampled at all!
 - + Let $N_0 = (N 1) * \#\{flow has only SYN sampled\}$
 - + Theorem: under model assumption
 - $E[N_0] = E[M_0]$
 - + Proof: consider event S that flow has no non-SYN packet sampled
 - $\{flow \ not \ sampled\} = \{SYN \ not \ sampled\} \cap S$
 - {only SYN sampled} = {SYN sampled} \cap S
 - + Hence, since $\{flow not sampled\}$, $\{only SYN sampled\} \subseteq S$,
 - Prob[flow not sampled] = Prob[S] (1-1/N)
 - Prob[only SYN sampled] = Prob[S] / N
 - Prob[flow not sampled] = (N 1) * P[only SYN sampled]

Estimating number of original TCP flows, byte/packets per flow

- Consequences
 - + if there were no flow splitting:
 - #{measured flows} = #{original flows with ≥1 packetsampled}
 - $+ M_2 = N_0 + \#\{\text{sampled flows}\}\$ is unbiased estimator if no flow splitting:
 - E[M₂] = E[#{unsampled flows}] + E[#{sampled flows}] =#original flows
- ☐ Comparison
 - $+ M_1$: higher variance (less data), unbiased by flow splitting
 - $+ M_2$: lower variance (more data), biased by flow splitting
- ☐ Corresponding estimates of mean packets per flow, bytes per flow
 - + packets: $p_{est,i} = P_{est} / M_i$; bytes: $b_{est,i} = B_{est} / M_i$; i = 1,2

Estimation Accuracy

☐ Restricted packet trace:

+ select only packets in original TCP flows starting a SYN packet

		pest, 1	pest, 2	StdErr	M 1
Mean length of \	N				
original flows	1	23.0	23.0	n/a	299875
	10	22.4	22.1	0.12	307670
	100	22.5	21.9	0.44	306400
	1,000	22.0	21.7	1.23	313000

- ☐ Error comparable with standard deviation, but some bias
 - + 7 times std_dev for N = 10, < 1 std_dev for N=1,000
 - + M_1 increases: small number of flows with more than 1 SYN packet
- \square Can improve accuracy of $p_{est, 2}$ by scaling $T \propto N$
 - + suppress splitting of sparse flows
- \Box p_{est, 1} gives best accuracy

Summary

- ☐ Resource usage to form packet sample flows
 - + sensitive to detailed traffic characteristics
 - + developed simple model to predict from traces
- ☐ Inference of original traffic characteristics
 - + from packet sampled flow statistics
 - + bytes and packets: simple estimators, error bounds
 - + number of original flows:
 - TCP flow only: use reported statistics of sampled SYN packets
 - estimator: good experimental accuracy
- ☐ One instance of a general problem:
 - + to understand impact of sampling on measurement based applications