BRR Estimation of Variance of Survey Estimates Weight-adjusted for Nonresponse

Eric Slud^{1,2} and Yves Thibaudeau¹

¹Stat. Res. Div., Census Bureau 2 Math. Dept., Univ. of MD

Objective: to evaluate theoretically the bias of Balanced Replication Variance estimates of survey-weighted nonresponse-adjusted totals with misspecified nonresponse adjustment cells.

Method: large-sample formulas under superpopulation quasirandomization model (Oh & Scheuren 1983) and reasonable assumptions on attributes and split-PSU intersections with true and working adjustment cells.

Rationale

Large complex surveys generally involve

- nonresponse adjustments, based on adjustment cells, using ratio, raking, or calibration estimators
- difficulty in specifying joint inclusion probabilities to obtain variances of survey weighted estimators
- replication-based variance estimators

Justification of BRR (e.g. Krewski-Rao 1981) generally given for full response, not *misspecified* nonresponse adjustment.

Nonresp. adjustment bias treated by Särndal & Lündstrom 2005.

Effect of erroneous adjustment on BRR not treated before.

Framework & Notation

Large frame \mathcal{U} , size N, (balanced) split-PSU's \mathcal{U}_{kH} , H = 1, 2

Adjustment cells C_m , m = 1, ..., M, partition \mathcal{U}

Stratified Simple Random Sample $S = \bigcup_{k,H} S_{kH}$

- attributes y_i , single & joint inclusion probabilities π_i , π_{ij}
- sampling fraction f small, same in all PSU's; n = fN large
- r_i the {0,1} valued indicator of unit *i* response assumed random, independent : $\phi_i = 1/E(r_i)$

Assume $1/\phi_i = \rho_l$ when $l = l(i) \Leftrightarrow i \in B_l$ true response cells Partitions $\mathcal{U} = B_1 \cup B_2 \cup \cdots \cup B_L = C_1 \cup C_2 \cup \cdots \cup C_M$. Estimator $\hat{Y} \equiv \sum_{m=1}^M \sum_{\mathcal{S} \cap C_m} \hat{c}_m \frac{r_i}{\pi_i} y_i$, Adjustmt $\hat{c}_m = \frac{\sum_{\mathcal{S} \cap C_m} \pi_i^{-1}}{\sum_{\mathcal{S} \cap C_m} r_i \pi_i^{-1}}$

Ratio & Regression Estimators

Calibration and regression estimators for the predictor variables

$$\mathbf{x}_{i} = (I_{[i \in C_{1}]}, I_{[i \in C_{2}]}, \dots, I_{[i \in C_{M}]})$$

Denote $m(i) = m \iff i \in C_m$.

Regression
$$\hat{\beta}_m \equiv \sum_{i \in S \cap C_m} \frac{r_i y_i}{\pi_i} / \sum_{i \in S \cap C_m} \frac{r_i}{\pi_i}$$

Residuals $\hat{e}_i \equiv y_i - \hat{\beta}_{m(i)}$

Estimator $\tilde{\phi}_i$ of $\phi_i = 1/E(r_i)$ can be

- $\hat{c}_{m(i)}$ based on cells C_m or
- based on detailed (e.g., *logistic regression*) model with demographic/geographic covariates.

BRR Variance Estimator

Let t = 1, ..., R index replicate factors $(f_{it}, i \in U)$. $f_{it} = 1 + 0.5 (-1)^H a_{kt}$ if $i \in \mathcal{U}_{kH}$, $a_{kt} = \pm 1$ $\sum_{t=1}^{R} a_{kt} = R$, $\sum_{t=1}^{R} a_{kt} a_{k't} = 0$ if $k \neq k'$ Replicate Adjustment Factor: $\hat{c}_m^{(t)} = \frac{\sum_{i \in S \cap C_m} (f_{it}/\pi_i)}{\sum_{i \in S \cap C_m} (f_{it} r_i/\pi_i)}$ Replicate Survey Estimator: $\hat{Y}^{(t)} = \sum_{m} \sum_{S \cap C_m} \frac{f_{it} r_i}{\pi_i} \hat{c}_m^{(t)} y_i$ **BRR Estimator of** $V(\hat{Y})$: $\hat{V}_{\text{BRR}} = 4R^{-1} \sum_{k=1}^{R} (\hat{Y}^{(k)} - \hat{Y})^2$ $\approx f^{-2} \sum_{k} \left[\sum_{i \in S_{k,1}} \left(\hat{\beta}_{m(i)} + r_i \, \hat{c}_{m(i)} \, \hat{e}_i \right) - \sum_{i \in S_{i,2}} \left(\hat{\beta}_{m(i)} + r_i \, \hat{c}_{m(i)} \, \hat{e}_i \right) \right]^2$

Inclusion Prob Variance Estimators

Särndal-Lündstrom (2005) approximate formula (based on linearization & approx. correct adjustment)

$$\hat{V}_{LS} = \sum_{i,j\in\mathcal{S}} \left(\frac{\pi_{ij}}{\pi_i \pi_j} - 1\right) \frac{y_i y_j}{\pi_{ij}} + \sum_m \sum_{i\in\mathcal{S}\cap C_m} (\hat{c}_m - 1) \frac{\hat{e}_i^2}{\pi_i^2}$$

Could also replace $\,\widehat{c}_{m(i)}\,$ by $\,\widetilde{\phi}_i\,$: if that is available a more accurate linearization formula is

$$\widehat{V}(\widehat{Y}) = \sum_{m=1}^{M} \sum_{i \in S \cap C_m} \pi_i^{-2} \widehat{c}_m^2 (\widehat{e}_i / \widetilde{\phi}_i)^2 (\widetilde{\phi}_i - 1)$$

+
$$\sum_{i,j \in S} \left(\frac{\pi_{ij}}{\pi_i \pi_j} - 1 \right) (\pi_{ij})^{-1} (\widehat{\beta}_{m(i)} + \frac{\widehat{c}_{m(i)}}{\widetilde{\phi}_i} \widehat{e}_i) (\widehat{\beta}_{m(j)} + \frac{\widehat{c}_{m(j)}}{\widetilde{\phi}_j} \widehat{e}_j)$$

Superpopulation Framework

- r_i assumed independent $Binom(1, \rho_{l(i)}), l(i) = l \Leftrightarrow i \in B_l$.
- y_i assumed independent $\sim (\mu_k, \sigma^2)$ for $i \in \mathcal{U}_{kH}$ (with unif bounded third absolute moments)
- True response cells B_l , adjustment cells C_m , half-PSU's \mathcal{U}_{kH} have limiting intersections

 $N^{-1} # (\mathcal{U}_{kH} \cap B_l \cap C_m) \approx \nu(l, m, k, H)$

joint prob. mass function on $(1:L) \times (1:M) \times (1:K) \times (1:2)$

Problem: to Compare $\hat{V}(\hat{Y}), \hat{V}_{LS}, E(\hat{V}_{BRR})$

- In our setting, $f \hat{V}(\hat{Y})/N$, $f \hat{V}_{LS}/N$ have limits.
- \hat{V}_{BRR} consistent when L = M, $B_m = C_m$.
- in general $f \hat{V}_{BRR}/N \neq ;$ examine only $(f/N) E(\hat{V}_{BRR}).$

Limiting Parameter Values

Approx. distribution of cells $B_l \cap C_m$ and half-PSU for randomly chosen $i \in \mathcal{U}$ makes (l, m, k, H) jointly ν -distributed.

$$\widehat{c}_m \rightarrow c_m \equiv 1/E_{\nu}(\rho_l \mid m)$$

$$\widehat{\beta}_m \rightarrow \beta_m^0 \equiv E_{\nu}(\rho_l \,\mu_k \,|\, m) / E_{\nu}(\rho_l \,|\, m)$$

Limits for Inclusion-Prob Var Estimators

$$f \, \widehat{V}_{LS}/N \to \sum_{l,m,k,H} \{ \sigma^2 \, c_m \, + \, (c_m - 1) \, (\mu_k - \beta_m^0)^2 \} \, \nu(l,m,k,H)$$
$$\lim_N \operatorname{Bias}(\widehat{Y}/N) \, \to \, \sum_{l,m,k,H} \, (\beta_m^0 - \mu_k) \, \nu(l,m,k,H)$$

Limits $f \hat{V}(\hat{Y})/N$, $f E(\hat{V}_{BRR})/N$ more complicated.

Two Special Cases related to Cell Intersections and PSU's

(A) For all $k, l, m, \nu(l, m, k, 1) = \nu(l, m, k, 2)$. Says Half-PSU's are perfectly asymptotically balanced across all intersections of PSU's, true and adjustment cells.

(B) For all k, l, m, H, $\nu(l|m) = \nu(l|m, k, H)$. True cell label conditionally indep. of half-PSU given adj. cell.

Proposition. In the superpopulation setting above, Under (A), $(f/N) (E(\hat{V}_{\mathsf{BRR}}) - \hat{V}(\hat{Y})) \to 0.$ Under (B): $(f/N) (\hat{V}(\hat{Y}) - \hat{V}_{LS}) \to 0$ and $\mathsf{Bias}(\hat{Y}/N) \to 0;$

also $\max_k \frac{1}{N} | \# \mathcal{U}_{k1} - \# \mathcal{U}_{k2} | \to 0 \Rightarrow \frac{f}{N} (E(\hat{V}_{\mathsf{BRR}}) - \hat{V}(\hat{Y})) \to 0.$

When half-PSU H is chosen 'randomly' for each i (regardless of k, l, m), then BRR is large-sample unbiased.

Computational Examples

Numerical examples with $\nu(l, m, k, H)$ arrays defined to satisfy **(A)** and nearly **(B)**, then violate **(A)** more and more strongly.

Data on Four $\nu(\cdot)$ **Arrays,** L = M = 10, K = 5

Examp	avrsp	missp	SDcond	bias
1	.800	.159	.0039	.001
2	.800	.116	.0025	.001
3	.800	.121	.0080	.002
4	.800	.069	.0040	.001

avrsp = Average response $E_{\nu}(\rho_l)$

missp = Misspecification of cells $Var_{\nu}^{1/2}(\rho_l c_m)$

SDcond = average over (k, H) of SD $(\nu(l|m, k, H))$ (measures violation of **(B)**)

bias = bias of \hat{Y}/N , for $\underline{\mu} = (\frac{3}{4}, \frac{7}{8}, 1, \frac{9}{8}, \frac{5}{4})$.

Comparison of Large-Sample Variances in Examples Parameter ω measures imbalance: $\nu(H|l, m, k) = \frac{1}{2}(1 \pm \omega)$ with random signs \pm applied independently for each (k, l, m)

Table of $V \cdot f/N$ Values, where $\sigma^2 = 0.2$, n = fN = 5000

Examp	SDcond	ω	V_{SL}	V_{tru}	V_{brr}
1	.0039	0	.258	.258	.258
		0.10	.258	.258	.276
2	.0025	0	.262	.262	.262
		0.10	.262	.262	.296
3	.0080	0	.285	.291	.285
		0.05	.285	.291	.297
		0.10	.285	.291	.411
4	.0040	0	.264	.265	.264
		0.01	.264	.265	.294
		0.05	.264	.265	.311

Illustration with SIPP 1996

Survey of Income & Program Participation self representing strata (approx. 60% of sample in 1996 panel) had split-PSU design.

2 PSU's sampled for each non-SR stratum, then split. Systematic sample within PSU, by HU; split by alternate index.

Variances for weighted survey estimators calculated via BRR (VPLX). Inclusion probabilities unrealistic:

systematic sampling & Wave 1 nonresponse adjustment.

Next compare BRR (VPLX) variances vs. ppswr inclusion prob. formulas, at both person & HH level, for SR strata wave 1 totals.

Item	π-Est	VPLX.SD	V_{LS}	PPSWR	HH.PPS
Foodst	15378514	481500	216117	217054	390471
SocSec	20572397	300225	262270	261587	279827
UnEmp	3789512	126464	127137	118941	136608
DIV	10878183	206557	198058	191773	204829

Summary & Conclusions

BRR bias for complex surveys under misspecified response models studied theoretically, showing for large survey-samples:

- (1) for half-PSU index II closely balanced across cells intersected with PSU's, BRR variance estimator is remarkably **un**biased.
- (2) imbalances of a few percent (independently over cell intersections with PSU's) can inflate BRR variance from a few percent to a lot (40-50% or greater), depending on misspecification and PSU & cell intersection patterns.

Caveats: the superpopulation model here oversimplifies:

- independent responses likelier for HH than person units.
- attributes homoscedastic with means allowed to depend on PSU but not on true response or adjustment cells.

References

- 1. Fay, R. (1984) ASA, SRMS Proc. pp. 495-500.
- 2. Fay, R. (1989) ASA, SRMS Proc. pp. 212-217.
- 3. Kish, L. and Frankel, M. (1970) JASA.
- 4. Kim, Jae and Kim, Jay (2007) Canadian Jour. Stat. **35**, pp. 501-514.
- 5. Krewski, D. and Rao, J.N.K. (1981) Ann. Statist.
- 6. Oh, H. and Scheuren, F. (1983) paper in: *Incomplete Data in Sample Surveys*, vol. 2, 143-184.
- 7. Särndal, C.-E. and Lündstrom, S. (2005) *Estimation in Surveys with Nonresponse*. Wiley.
- 8. Slud, E. and Bailey, L. (2007) FCSM