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Objective: to evaluate theoretically the bias of Balanced
Replication Variance estimates of survey-weighted nonresponse-
adjusted totals with misspecified nonresponse adjustment cells.

Method: large-sample formulas under superpopulation quasi-
randomization model (Oh & Scheuren 1983) and reasonable
assumptions on attributes and split-PSU intersections with true
and working adjustment cells.
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Rationale

Large complex surveys generally involve

• nonresponse adjustments, based on adjustment cells, using
ratio, raking, or calibration estimators

• difficulty in specifying joint inclusion probabilities to obtain
variances of survey weighted estimators

• replication-based variance estimators

Justification of BRR (e.g. Krewski-Rao 1981) generally given for
full response, not misspecified nonresponse adjustment.

Nonresp. adjustment bias treated by Särndal & Lündstrom 2005.

Effect of erroneous adjustment on BRR not treated before.
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Framework & Notation

Large frame U , size N , (balanced) split-PSU’s UkH , H = 1,2

Adjustment cells Cm , m = 1, . . . , M, partition U

Stratified Simple Random Sample S = ∪k,H SkH

— attributes yi, single & joint inclusion probabilities πi , πij

— sampling fraction f small, same in all PSU’s; n = fN large

ri the {0,1} valued indicator of unit i response
assumed random, independent : φi = 1/E(ri)

Assume 1/φi = ρl when l = l(i) ⇔ i ∈ Bl true response cells

Partitions U = B1 ∪ B2 ∪ · · · ∪ BL = C1 ∪ C2 ∪ · · · ∪ CM .

Estimator Ŷ ≡
M∑

m=1

∑

S∩Cm

ĉm
ri

πi
yi , Adjustmt ĉm =

∑
S∩Cm π−1

i∑
S∩Cm ri π−1

i
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Ratio & Regression Estimators

Calibration and regression estimators for the predictor variables

xi = ( I[i∈C1]
, I[i∈C2]

, . . . , I[i∈CM ] )

Denote m(i) = m ⇐⇒ i ∈ Cm.

Regression β̂m ≡
∑

i∈S∩Cm

ri yi

πi
/

∑

i∈S∩Cm

ri

πi

Residuals êi ≡ yi − β̂m(i)

Estimator φ̃i of φi = 1/E(ri) can be

• ĉm(i) based on cells Cm or

• based on detailed (e.g., logistic regression) model with
demographic/geographic covariates.

USCENSUSBUREAU



BRR Variance Estimator

Let t = 1, . . . , R index replicate factors (fit, i ∈ U).

fit = 1 + 0.5 (−1)H akt if i ∈ UkH , akt = ±1

∑R
t=1 akt = R ,

∑R
t=1 akt ak′t = 0 if k 6= k′

Replicate Adjustment Factor: ĉ
(t)
m =

∑
i∈S∩Cm (fit/πi)∑

i∈S∩Cm (fit ri/πi)

Replicate Survey Estimator: Ŷ (t) =
∑

m

∑

S∩Cm

fit ri

πi
ĉ
(t)
m yi

BRR Estimator of V (Ŷ ) : V̂BRR = 4R−1
R∑

t=1

(Ŷ (t) − Ŷ )2

≈ f−2
∑

k

[
∑

i∈Sk,1

(β̂m(i) + ri ĉm(i) êi) −
∑

i∈Sk,2

(β̂m(i) + ri ĉm(i) êi) ]2
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Inclusion Prob Variance Estimators

Särndal-Lündstrom (2005) approximate formula (based on
linearization & approx. correct adjustment)

V̂LS =
∑

i,j∈S
(

πij

πi πj
− 1)

yi yj

πij
+

∑

m

∑

i∈S∩Cm

(ĉm − 1)
ê2i
π2

i

Could also replace ĉm(i) by φ̃i : if that is available a more
accurate linearization formula is

V̂ (Ŷ ) =
M∑

m=1

∑

i∈S∩Cm

π−2
i ĉ2m (êi/φ̃i)

2 (φ̃i − 1)

+
∑

i,j∈S
(

πij

πi πj
− 1) (πij)

−1 (β̂m(i) +
ĉm(i)

φ̃i
êi) (β̂m(j) +

ĉm(j)

φ̃j
êj)
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Superpopulation Framework

• ri assumed independent Binom(1, ρl(i)) , l(i) = l ⇔ i ∈ Bl .

• yi assumed independent ∼ (µk, σ2) for i ∈ UkH
(with unif bounded third absolute moments)

• True response cells Bl, adjustment cells Cm, half-PSU’s
UkH have limiting intersections

N−1 #(UkH ∩ Bl ∩ Cm) ≈ ν(l, m, k, H)

joint prob. mass function on (1 : L)×(1 : M)×(1 : K)×(1 : 2)

Problem: to Compare V̂ (Ŷ ), V̂LS, E(V̂BRR)

— In our setting, f V̂ (Ŷ )/N , f V̂LS/N have limits.

— V̂BRR consistent when L = M, Bm = Cm.

— in general f V̂BRR/N 6→ ; examine only (f/N)E(V̂BRR).
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Limiting Parameter Values
Approx. distribution of cells Bl∩Cm and half-PSU for randomly
chosen i ∈ U makes (l, m, k, H) jointly ν-distributed.

ĉm → cm ≡ 1/Eν(ρl |m)

β̂m → β0
m ≡ Eν(ρl µk |m)/Eν(ρl |m)

Limits for Inclusion-Prob Var Estimators

f V̂LS/N →
∑

l,m,k,H

{σ2 cm + (cm − 1) (µk − β0
m)2} ν(l, m, k, H)

lim
N

Bias(Ŷ /N) →
∑

l,m,k,H

(β0
m − µk) ν(l, m, k, H)

Limits f V̂ (Ŷ )/N, f E(V̂BRR)/N more complicated.
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Two Special Cases related to Cell Intersections and PSU’s

(A) For all k, l, m, ν(l, m, k,1) = ν(l, m, k,2).
Says Half-PSU’s are perfectly asymptotically balanced across all
intersections of PSU’s, true and adjustment cells.

(B) For all k, l, m, H, ν(l|m) = ν(l|m, k, H).

True cell label conditionally indep. of half-PSU given adj. cell.

Proposition. In the superpopulation setting above,

Under (A), (f/N) (E(V̂BRR) − V̂ (Ŷ )) → 0.

Under (B): (f/N) (V̂ (Ŷ ) − V̂LS) → 0 and Bias(Ŷ /N) → 0;

also maxk
1
N |#Uk1 − #Uk2| → 0 ⇒ f

N (E(V̂BRR)− V̂ (Ŷ )) → 0.

When half-PSU H is chosen ‘randomly’ for each i
(regardless of k, l, m), then BRR is large-sample unbiased.
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Computational Examples
Numerical examples with ν(l, m, k, H) arrays defined to satisfy
(A) and nearly (B), then violate (A) more and more strongly.

Data on Four ν(·) Arrays, L = M = 10, K = 5

Examp avrsp missp SDcond bias

1 .800 .159 .0039 .001
2 .800 .116 .0025 .001
3 .800 .121 .0080 .002
4 .800 .069 .0040 .001

avrsp = Average response Eν(ρl)

missp = Misspecification of cells Var
1/2
ν (ρlcm)

SDcond = average over (k, H) of SD(ν(l|m, k, H))
(measures violation of (B))

bias = bias of Ŷ /N , for µ = (3
4, 7

8,1, 9
8, 5

4).
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Comparison of Large-Sample Variances in Examples

Parameter ω measures imbalance: ν(H|l, m, k) = 1
2 (1 ±ω)

with random signs ± applied independently for each (k, l, m)

Table of V · f/N Values, where σ2 = 0.2, n = fN = 5000

Examp SDcond ω VSL Vtru Vbrr

1 .0039 0 .258 .258 .258
0.10 .258 .258 .276

2 .0025 0 .262 .262 .262
0.10 .262 .262 .296

3 .0080 0 .285 .291 .285
0.05 .285 .291 .297
0.10 .285 .291 .411

4 .0040 0 .264 .265 .264
0.01 .264 .265 .294
0.05 .264 .265 .311
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Illustration with SIPP 1996

Survey of Income & Program Participation self representing strata
(approx. 60% of sample in 1996 panel) had split-PSU design.

2 PSU’s sampled for each non-SR stratum, then split.
Systematic sample within PSU, by HU; split by alternate index.

Variances for weighted survey estimators calculated via BRR
(VPLX). Inclusion probabilities unrealistic:
systematic sampling & Wave 1 nonresponse adjustment.

Next compare BRR (VPLX) variances vs. ppswr inclusion prob.
formulas, at both person & HH level, for SR strata wave 1 totals.

Item π-Est VPLX.SD VLS PPSWR HH.PPS
Foodst 15378514 481500 216117 217054 390471
SocSec 20572397 300225 262270 261587 279827
UnEmp 3789512 126464 127137 118941 136608

DIV 10878183 206557 198058 191773 204829
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Summary & Conclusions

BRR bias for complex surveys under misspecified response mod-
els studied theoretically, showing for large survey-samples:

(1) for half-PSU index H closely balanced across cells intersected
with PSU’s, BRR variance estimator is remarkably unbiased.

(2) imbalances of a few percent (independently over cell in-
tersections with PSU’s) can inflate BRR variance from a
few percent to a lot (40-50% or greater), depending on
misspecification and PSU & cell intersection patterns.

Caveats: the superpopulation model here oversimplifies:

• independent responses likelier for HH than person units.

• attributes homoscedastic with means allowed to depend on
PSU but not on true response or adjustment cells.
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