Evaluating Mode Effects in Mixed-Mode Surveys using Back-door, Front-Door, and Instrumental Variables ## Jorre Vannieuwenhuyze # ITSEW, September 2 - 4, 2012 | Theory | 3 | |---------------------|----| | Data | 4 | | Mode effects | 5 | | Causal inference | 6 | | 1: Back-door | 7 | | 2: Front-door | 8 | | 3: Instrumental Var | 9 | | Example | 10 | | Survey on surveys | 11 | | Variables | 12 | | Results | 13 | | Conclusions | 14 | | Discussion | 15 | | Correspondence | 16 | Table of contents Theory Example 2 / 16 **Theory** 3 / 16 | Data | | | | |------|--------------|-------|----------------------------------| | ID | G_{δ} | D | Y | | 1 | m_1 | m_1 | y_{1,m_1} | | 1 | m_1 | m_2 | $y_{1,m_2}=counterfactual$ | | 2 | m_1 | m_1 | y_{2,m_1} | | 2 | m_1 | m_2 | $y_{2,m_2}=counterfactual$ | | 3 | m_2 | m_1 | $y_{3,m_1}=counterfactual$ | | 3 | m_2 | m_2 | y_{3,m_2} | | 4 | m_2 | m_1 | $y_{4,m_1}={\sf counterfactual}$ | | 4 | m_2 | m_2 | y_{4,m_2} | | | | | | 4 / 16 - \blacksquare ID = respondent identification number - \blacksquare Y = target variable **Conclusions** - G_{δ} = the mode to which a respondent is allocated within design δ (mode m_1 or m_2) We expect differences in measurement error between the modes \Rightarrow respondents would respond differently with different modes \Rightarrow each respondent can be represented by two data lines instead of one, each referring to measurement by one particular modes $\rightarrow D$ denotes mode of measurement. - lacktriangledown only data lines where $G_delta=D$ are observed, data lines where $G_delta\neq D$ are counterfactual note 1 of slide 4 5 / 16 - lacktriangledown is target statistic defined on target variable Y - lacktriangle four θ 's can be defined conditional on G_δ and D, two of them counterfactual - if m_1 is benchmark mode (assumed no measurement error), interest is in $Y_{m_1m_1}$ and $Y_{m_1m_2}$, i.e. the outcomes of all respondents measured by mode m_1 - \blacksquare $S_{m_1}(\theta)$ preferably non-zero because otherwise mixed-mode survey useless - lacksquare $M_{m_1}(heta)$ preferably zero because otherwise mixed-mode survey outcomes biased - lacktriangledown but $S_{m_1}(heta)$ and $M_{m_1}(heta)$ not directly estimable because $heta(Y_{m_1m_2})$ counterfactual note 1 of slide 5 #### **Causal inference** 6 / 16 ### **METHOD 1: Back-door Method** - ASMP 1: ignorable mode allocation (①) - ASMP 2: mode-insensitivity (②) 7 / 16 back-door variables B= variables completely explaining mode allocation/mode selection of respondents, e.g. questions about mode preferences. note 1 of slide 7 #### **METHOD 2: Front-door method** - ASMP 1: exhaustiveness (③) - ASMP 2: isolation (④) 8 / 16 lacktriangleright front-door variables F= variables completely explaining measurement error differences between the modes, e.g. questions about response burden, social desirability, acquiescence,.... note 1 of slide 8 ### **METHOD 3: Instrumental variable** - ASMP 1: measurement equivalence (⑤) - ASMP 2: representativity (⑥) - Disadvantage: conditional effects 9 / 16 lacktriangleright instrumental variables I= variable allocating respondent to two different samples, e.g. a mixed-mode sample versus a single-mode sample. note 1 of slide 9 Example 10 / 16 ## Survey on surveys - 2004 in Flanders - Mixed-mode sample - ♦ Mail questionnaire - ♦ FTF follow-up - ◆ RR=66.6% - Comparative sample - ♦ FTF - ◆ RR=69.5% 11 / 16 | Variables | | | | |-----------|----------------|--|--| | | \overline{Y} | I do not like participating in surveys | | | | | (Interest in mean $\theta(Y) = \mu(Y)$) | | | | B_1 | $\overline{age imes gender}$ | | | | B_2 | educational level | | | | B_3 | ownership of a personal email-address | | | | B_4 | activity status | | | | B_5 | number of adults in the household | | | | B_6 | number of adolescents in the household | | | | B_7 | number of children in the household | | | | \overline{F} | answering questions (un)pleasant task | | | | \overline{I} | dataset (mixed-mode or comparative) | | | | | | | 12 / 16 | Results | | | | |---------|-----------|---------------|---------------| | | effect(p) | | | | | | S_{ftf} | M_{ftf} | | | BD | -0.048(0.714) | 0.319(0.001) | | | FD | -0.599(<.001) | -0.232(<.001) | | | IV | -0.820(<.001) | -0.454(0.001) | | | | S_{mail} | M_{mail} | | | BD | -0.040(0.570) | -0.407(<.001) | | | FD | 0.455(<.001) | 0.088(0.157) | | | IV | n.a. | n.a. | | | | | | 13 / 16 - BD = back-door method, FD = front-door method, IV = instrumental variable method - \blacksquare $S_{\rm ftf}$ negative means mail questionnaire respondents more positive about surveys than the face-to-face respondents in the follow-up phase, - lacksquare S_{mail} positive idem interpretation - lacktriangledown $M_{ m ftf}$ negative means respondents say they are more positive about surveys in face-to-face interview compared to mail questionnaire - lacksquare M_{mail} positive idem interpretation - FD & IV in line with expectations, BD not - !reason = bad covariates, not the methods themselves are bad note 1 of slide 13 Conclusions 14 / 16 #### Discussion - Weaknesses - lacktriangle IV: requires additional data, conditional estimates, >2 modes = trouble - Strengths - All: Validity assumptions? - ◆ BD: procedures readily available - Threats - ◆ All: Validity assumptions? - ♦ BD: Popularity - Opportunities - ◆ BD: other selection vars (e.g. paradata)? - ♦ FD: other measurement vars? - ◆ IV: adaptation survey design to validate/control? - ◆ All: Combination models 15 / 16 # Correspondence 16 / 16 ## Correspondence e-mail: jorre.vannieuwenhuyze@soc.kuleuven.be adress: Jorre Vannieuwenhuyze, OE Centrum voor Sociologisch Onderzoek, Parkstraat 45 - bus 3601, B-3000 Leuven, België tel: $+32\ 16\ 323144$ fax: $+32\ 16\ 323365$ 16 / 16