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ABSTRACT

Today's Internet is a massive, distributed network which continues to explode in size as e-
commerce and related activities grow. The heterogeneous and largely unregulated structure of
the Internet renders tasks such as dynamic routing, optimized service provision, service level
veri�cation, and detection of anomalous/malicious behavior increasingly challenging tasks. The
problem is compounded by the fact that one cannot rely on the cooperation of individual servers
and routers to aid in the collection of network traÆc measurements vital for these tasks. In
many ways, network monitoring and inference problems bear a strong resemblance to other
\inverse problems" in which key aspects of a system are not directly observable. Familiar
signal processing problems such as tomographic image reconstruction, system identi�cation,
and array processing all have interesting interpretations in the networking context. This article
introduces the new �eld of network tomography, a �eld which we believe will bene�t greatly
from the wealth of signal processing theory and algorithms.

1 Introduction

The Internet has evolved from a small tightly controlled network serving only a few users in
the late 1970's to the immense multi-layered collection of heterogeneous terminals, routers and
other platforms that we encounter today when web-sur�ng. Unlike, for example, the telephone
network which evolved in a slower and more controlled manner, the Internet has evolved very
rapidly in a largely unregulated and open environment. The lack of centralized control and
the heterogeneous nature of the Internet leads to a very important problem: mapping network
connectivity, bandwidth, and performance as functions of space and time. A wide variety of In-
ternet maps have been produced using existing networking tools such as ping and traceroute.
Information on these tools, along with a collection of interesting Internet mapping projects,
can be found on the CAIDA (Cooperative Association for Internet Data Analysis) [1]. A sur-
vey of many Internet mapping projects and results is found in the popular-science book Atlas
of Cyberspace [2]. The mapping techniques described in the references above, however, usu-
ally provide only a partial picture of the Internet because they do not produce quantitative
performance information. The decentralized nature of the Internet makes quantitative assess-
ment of network performance very diÆcult. One cannot depend on individual servers and
routers to freely transmit vital network statistics such as traÆc rates, link delays, and dropped



packet rates. The collection of network statistics at servers and internal routers can impose an
impracticable overhead expense in terms of added computing, communication, and hardware
requirements. Even if such statistics can be collected, an Internet Service Provider (ISP) may
regard such information as highly con�dential. Moreover, the transmission of statistics to a
central processing point may consume considerable bandwidth, adding to network load and
congestion.

In certain cases, however, useful network statistics can be indirectly acquired without
special-purpose cooperation from servers and routers and with little or no impact on net-
work load. These statistical quantities can reveal hidden network structure and help to detect
and isolate congestion, routing faults, and anomalous traÆc. The acquisition of the statistics
relies on the application of sophisticated methods of active network probing or passive traÆc
monitoring. These methods do not directly provide the desired information. The problem of
extracting the hidden information from active or passive traÆc measurements falls in the realm
of statistical inverse problems, an area which has long been of interest to signal and image
processing researchers. Signal processing know-how, acquired in areas such as image recon-
struction, pattern recognition, system identi�cation, and sensor array signal processing, can
provide tremendous insight into networking inverse problems.

This article deals with network monitoring and inference for wired networks such as the
Internet. The word \inference" is intended to more sharply delineate the �eld of study ad-
dressed in the article, precluding approaches that directly measure network statistics or rely
on complete cooperation from the network. The task of inferential network monitoring gives
rise to problems that involve the estimation of a potentially very large number of spatially
distributed parameters, e.g., single link loss rates, delay distributions, connectivity, and traÆc

ow. To tackle such large estimation problems, researchers adopt the simplest possible models
for network traÆc and ignore many intricacies of packet transport such as feedback and la-
tency. These simpler models, although not suitable for �ne-grain analysis of individual queuing
mechanisms and network traÆc behavior, are generally adequate for the inference of gross-level
performance characteristics. Focus is shifted from detailed mathematical modeling of network
dynamics [3, 4] to careful handling of measurement and probing strategies, large scale com-
putations, and model validation. The measurement methodologies require: software tools for
monitoring traÆc 
ow and generating probe traÆc; statistical modeling of the measurement
process; sampling strategies for online data collection. The underlying computational science
involves: complexity reducing hierarchical statistical models; moment and likelihood based es-
timation; expectation-maximization algorithms; Markov Chain Monte Carlo algorithms; and
other iterative optimization methods. Model validation includes: study of parameter identi�-
ability conditions; feasibility analysis via Cram�er-Rao bounds and other bounding techniques;
implementation of network simulation software such as the ns-2 network simulation environ-
ment [5]; and application to real network data.

Many in the network community have long been interested in measuring internal network pa-
rameters and in mathematical and statistical characterization of network behavior. Researchers
in the �elds of computer science, network measurement and network protocols have developed
software for measuring link delays, detecting intruders and rogue nodes, and isolating routing
table inconsistencies and other faults. Researchers from the �elds of networking, signal process-
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ing, automatic control, statistics, and applied mathematics have been interested in modeling
the statistical behavior of network traÆc and using these models to infer data transport param-
eters of the network. Previous work can be divided into three areas: i) development of software
tools to monitor/probe the network; ii) probabilistic modeling of networks of queues; and iii)
inference from measurements of single stream or multiple streams of traÆc.

Computer scientists and network engineers have developed many tools for active and pas-
sive measurement of the network. These tools usually require extra cooperation (in addition
to the basic cooperation required for routine packet transmission) amongst the nodes of the
network. For example, in sessions running under RTCP (Real Time Control Protocol), sum-
mary sender/receiver reports on packet jitter and packet losses are distributed to all session
participants [6]. Active probing tools such as ping, pathchar (pchar), clink, and traceroute

measure and report packet transport attributes of the round-trip path (from sender to receiver
and back) of a probe (see [1] for a survey of these and other measurement tools). Trajectory
sampling [7] is another example of an active probing software tool. These methods depend on
accurate reporting by all nodes along the route and many require special assumptions, e.g., sym-
metric forward/reverse links, existence of store-and-forward routers, non-existence of �re-walls.
As the Internet evolves towards decentralized, uncooperative, heterogeneous administration and
edge-based control these tools will be limited in their capability. In the future, large-scale infer-
ence and tomography methods such as those discussed in this article will become of increasing
importance due to their ability to deal with uncooperative networks.

Network queueing theory o�ers a rich mathematical framework which can be useful for
analyzing small scale networks with a few interconnected servers. See the recent books [3, 4]
for overviews of this area. The limitations of queuing network models for analyzing real, large-
scale networks can be compared to the limited utility of classical Newtonian mechanics in
complex large scale interacting particle systems: the macroscopic behavior of an aggregate of
many atoms appears qualitatively di�erent from what is observed at a microscopic scale with
a few isolated atomic nuclei. Furthermore, detailed information on queuing dynamics in the
network is probably unnecessary when, by making a few simple approximations, one can obtain
reasonably accurate estimates of average link delays, dropped packet probabilities, and average
traÆc rates directly from external measurements. The much more computationally demanding
queuing network analysis becomes necessary when addressing a di�erent set of problems that
can be solved o�-line. Such problems include calculating accurate estimates of �ne grain network
behavior, e.g., the dynamics of node traÆc rates, service times, and queue lengths.

The area of statistical modeling of network traÆc is a mature and active �eld [8, 9, 10, 11, 12].
Sophisticated fractal and multifractal models of single traÆc streams can account for long
range dependency, non-Gaussian distributions, and other peculiar behaviors. Such self similar
behavior of traÆc rates has been validated for heavily loaded wired networks [13]. For a detailed
overview of these and other statistical traÆc models we refer the reader to the companion
article(s) in this special issue. To date these models are overly complicated to be incorporated
into the large scale network inference problems discussed in this article. Simplifying assumptions
such as spatial and temporal independence are often made in order to devise practical and
scalable inference algorithms. By making these assumptions, a fundamental linear observation
model can be used to simplify the inference process. While some progress has been made on
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incorporating simple �rst order spatio-temporal dependency models into large scale network
inference problems [14] much work remains to be done.

This article attempts to be fairly self-contained; only a modest familiarity with network-
ing principles is required and basic concepts are de�ned as necessary. For more background
information, the a number of recent textbooks [15, 16, 17, 18, 19, 20, 21] provide an excellent
introductions to the �eld of networking. The article is organized as follows. First we brie
y
review the area of large scale network inference and tomography. We then discuss link-level
inference from path measurements and focus on two examples; loss rate and delay distribution
estimation. We consider the problem of determining the connectivity structure or topology of
a network and then turn to origin-destination traÆc matrix inference from link measurements
in the context of both stationary and non-stationary traÆc.

2 Network Tomography

2.1 Network Tomography Basics

Large scale network inference problems can be classi�ed according to the type of data acquisi-
tion and the performance parameters of interest. To discuss these distinctions, we require some
basic de�nitions. Consider the network depicted in Figure 1. Each node represents a computer
terminal, router or subnetwork (consisting of multiple computers/routers). A connection be-
tween two nodes is called a path. Each path consists of one or more links | direct connections
with no intermediate nodes. The links may be unidirectional or bidirectional, depending on the
level of abstraction and the problem context. Each link can represent a chain of physical links
connected by intermediate routers. Messages are transmitted by sending packets of bits from
a source node to a destination node along a path which generally passes through several other
nodes.

Broadly speaking, large scale network inference involves estimating network performance
parameters based on traÆc measurements at a limited subset of the nodes. Y. Vardi was one
of the �rst to rigorously study this sort of problem and coined the term network tomography
[22] due to the similarity between network inference and medical tomography. Two forms
of network tomography have been addressed in the recent literature: i) link-level parameter
estimation based on end-to-end, path-level traÆc measurements [23, 24, 25, 26, 27, 28, 29, 30,
31, 32] and ii) sender-receiver path-level traÆc intensity estimation based on link-level traÆc
measurements [33, 22, 34, 35, 36].

In link-level parameter estimation, the traÆc measurements typically consist of counts of
packets transmitted and/or received between nodes or time delays between packet transmissions
and receptions. The time delays are due to both propagation delays and router processing delays
along the path. The measured path delay is the sum of the delays on the links comprising the
path; the link delay comprises both the propagation delay on that link and the queuing delay at
the routers lying along that link. A packet is dropped if it does not successfully reach the input
bu�er of the destination node. Link delays and occurrences of dropped packets are inherently
random. Random link delays can be caused by router output bu�er delays, router packet
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Figure 1: An arbitrary network topology. Each node represents a computer or a cluster of computers
or a router. Each edge in the graph represents a direct link between two nodes. The topology here
depicts \clusters" corresponding to local area networks or other subnetworks connected together via the
network \backbone". The width of each edge re
ects the bandwidth of the corresponding connection
(thicker edge implies higher bandwidth).

servicing delays, and propagation delay variability. Dropped packets on a link are usually due
to overload of the �nite output bu�er of one of the routers encountered when traversing the
link, but may also be caused by equipment down-time due to maintenance or power failures.
Random link delays and packet losses become particularly substantial when there is a large
amount of cross-traÆc competing for service by routers along a path.

In path-level traÆc intensity estimation, the measurements consist of counts of packets that
pass through nodes in the network. In privately owned networks, the collection of such mea-
surements is relatively straightforward. Based on these measurements, the goal is to estimate
how much traÆc originated from a speci�ed node and was destined for a speci�ed receiver.
The combination of the traÆc intensities of all these origin-destination pairs forms the origin-
destination traÆc matrix. In this problem not only are the node-level measurements inherently
random, but the parameter to be estimated (the origin-destination traÆc matrix) must itself
be treated not as a �xed parameter but as a random vector. Randomness arises from the traÆc
generation itself, rather than perturbations or measurement noise.

The inherent randomness in both link-level and path-level measurements motivates the
adoption of statistical methodologies for large scale network inference and tomography. Many
network tomography problems can be roughly approximated by the (not necessarily Gaussian)
linear model

y = A� + �; (1)

where: y is a vector of measurements, e.g., packet counts or end-to-end delays, taken at a num-
ber of di�erent measurement sites; A is a routing matrix; � is a vector of packet parameters,
e.g. mean delays, logarithms of packet transmission probabilities over a link, or the random
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origin-destination traÆc vector; � is a noise term which can result from random perturbations
of � about its mean value and possibly also additive noise in the measured data y (in the origin-
destination traÆc matrix estimation problem � is generally assumed to be zero. Typically, but
not always, A is a binary matrix (the i; j-th element is equal to `1' or `0') that captures the
topology of the network. The problem of large scale network inference refers to the problem
of estimating the network parameters � given y and either a set of assumptions on the statis-
tical distribution of the noise � or the introduction of some form of regularization to induce
identi�ability. Speci�c examples are discussed below.

What sets the large scale network inference problem (1) apart from other network inference
problems is the potentially very large dimension of A which can range from a half a dozen
rows and columns for a few packet parameters and a few measurement sites in a small local
area network, to thousands or tens of thousands of rows and columns for a moderate number
of parameters and measurements sites in the Internet. The associated high dimensional prob-
lems of estimating � are speci�c examples of inverse problems. Inverse problems have a very
extensive literature both in signal processing [37], statistics [38], and in applied mathematics
[39]. Solution methods for such inverse problems depend on the nature of the noise � and
the A matrix and typically require iterative algorithms since they cannot be solved directly.
In general, A is not full-rank, so that identi�ability concerns arise. Either one must be con-
tent to resolve linear combinations of the parameters or one must employ statistical means to
introduce regularization and induce identi�ability. Both tactics are utilized in the examples
in later sections of the article. In most of the large scale Internet inference and tomography
problems studied to date, the components of the noise vector � are assumed to be approxi-
mately independent Gaussian, Poisson, binomial or multinomial distributed. When the noise
is Gaussian distributed with covariance independent of A�, methods such as recursive linear
least squares can be implemented using conjugate gradient, Gauss-Seidel, and other iterative
equation solvers. When the noise is modeled as Poisson, binomial, or multinomial distributed
more sophisticated statistical methods such as reweighted non-linear least squares, maximum
likelihood via expectation-maximization (EM), and maximum a posteriori (MAP) via Monte
Carlo Markov Chain (MCMC) algorithms can be used. These approaches will be illustrated in
Sections 3 and 4.

2.2 Examples of Network Tomography

Let us consider three concrete examples of the linear model (1). First, consider the problem of
estimating the packet success probability on each link given end-to-end, origin-to-destination
(OD) counts of packet losses1. Let � denote the collection of log success probabilities for each
link. The OD log success probability is simply A�, where A is the binary routing matrix
described above. Assuming a known number of packets sent from each source to destination,
a binomial measurement model can be adopted [25]. When the number of packets sent and
received are large, then the binomial model can be approximated with a Gaussian likelihood,
leading to the classical linear model above (1). Second, suppose that end-to-end, OD delays are
measured and the goal is estimation of the delay probability distributions along each link. In

1The loss probabilities or \loss rates" are simply one minus the probability of successful transmission.
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this case, let � be a vector composed of the cumulant generating functions of the delay densities
on each link. Then, with appropriate approximation arguments [31], y is again related to �
according to the linear model (1). Third, in the OD traÆc matrix estimation case, y are link-
level packet count measurements and � are the OD traÆc intensities. Gaussian assumptions
are made on the origin-destination traÆc with a mean-variance relationship in high count
situations in [17] leading to the linear equation (1) without the error term �. In each of
these cases, the noise � may be correlated and have a covariance structure depending on A

and/or �, leading to less than trivial inference problems. Moreover, in many cases the limited
amount of data makes Gaussian approximations inappropriate and discrete observation models
(e.g., binomial) may be more accurate descriptions of the discrete, packetized nature of the
data. These discrete observation models necessitate more advanced inference tools such as the
Expectation-Maximization (EM) algorithm and Monte Carlo simulation schemes (more on this
in Section 3).

Let us consider two further embellishments of the basic network inference problem described
by the linear model (1). First, all quantities may, in general, be time-varying. For example, we
may write

yt = At �t + �t; (2)

where t denotes time. The estimation problems now involve tracking time varying parameters.
In fact, the time-varying scenario probably more accurately re
ects the dynamical nature of
the true networks. There have been several e�orts aimed at tracking nonstationary network
behavior which involve analogs of classical Kalman-�ltering methods [34, 26]. Another variation
on the basic problem (1) is obtained by assuming that the routing matrix A is not known
precisely. This leads to the so-called \topology identi�cation" problem [30, 40, 41, 42, 43, 44, 45],
and is somewhat akin to blind deconvolution or system identi�cation problems.

3 Link-Level Network Inference

Link-level network tomography is the estimation of link-level network parameters (loss rates,
delay distributions) from path-level measurements. Link-level parameters can be estimated from
direct measurements when all nodes in a network are cooperative. Many promising tools such as
pathchar (pchar), traceroute, clink, pipechar use Internet Control Message Protocol
(ICMP) packets (control packets that request information from routers) in order to estimate
link-level loss, latencies and bandwidths. However, many routers do not respond to or generate
ICMP packets or treat them with very low priority, motivating the development of large-scale
link-level network inference methods that do not rely on cooperation (or minimize cooperation
requirements).

In this article we discuss methods which require cooperation between a subset of the nodes in
the network, most commonly the edge nodes (hosts or ingress/egress routers). Research to date
has focused on the parameters of delay distributions, loss rates and bandwidths, but the general
problem extends to the reconstruction of other parameters such as available bandwidths and
service disciplines. The Multicast-based Inference of Network-internal Characteristics (MINC)
Project at the University of Massachusetts [23] pioneered the use of multicast probing for
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network tomography, and stimulated much of the current work in this area [23, 24, 25, 46, 26,
27, 29, 30, 31, 47, 32].

We now outline a general framework for the link-level tomography problems. Consider
network depicted in Figure 2(a). This illustrates the scenario where packets are sent from a set
of sources to a number of destinations. The end-to-end (path-level) behavior can be measured
via a coordinated measurement scheme between the sender and the receivers. The sender can
record whether a packet successfully reached its destination or was dropped/lost and determine
the transmission delay by way of some form of acknowledgment from the receiver to the sender
upon successful packet reception. It is assumed that the sender cannot directly determine the
speci�c link on which the packet was dropped nor measure delays or bandwidths on individual
links within paths. A network can be logically represented by a graph consisting of nodes
connected by links. Potentially, a logical link connecting two nodes represents many routers
and the physical links between them, as depicted in Figure 2.

router

physical link

computer

(a) Physical network

logical node

logical link

(b) Logical tree topology

Figure 2: Physical and logical networks. The \cloud" indicates portions of the network that are
inaccessible by direct measurement. (a) Physical structure for single sender multiple receiver
network. (b) Logical topology.

Each node is numbered j = 0; : : : ;m, and each link is assigned the number of the connected
node below it. Let there be n distinct measurement paths (from a sender to a receiver) through
the network, enumerated i = 1; : : : ; n. De�ne aij to be the probability that the i-th measurement
path contains the j-th link. In most cases aij will take values of 0 or 1, but it is useful to
maintain a level of generality which can handle random routing. A is the routing matrix having
ij-th element aij. The rows of A correspond to paths from the sender to the receivers and the
columns correspond to individual links in those paths. Figure 3 illustrates a simple network
consisting of a single sender (node 0), two receivers (the leaves of the tree, nodes 2 and 3) and
an internal node representing a router at which the two communication paths diverge (node
1). Only end-to-end measurements are possible, i.e., the paths are (0,2), and (0,3), where (s; t)
denotes the path between nodes s and t. There are 3 links and 2 paths/receivers, and therefore
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the matrix A is 2� 3 dimensional and has the form:

A =

 
1 1 0
1 0 1

!
(3)

Note that in this example, A is not full rank. We discuss the rami�cations in later sections.

1

2

0

3

link 1

link 3link 2

Figure 3: Tree-structured topology.

A number of key assumptions underpin current link-level network tomography techniques,
determining measurement frameworks and mathematical models. The routing matrix is usu-
ally assumed to be known and constant throughout the measurement period. Although the
routing tables in the Internet are periodically updated, these changes occur at intervals of sev-
eral minutes. However, the dynamics of the routing matrix may restrict the amount of data
that can be collected and used for inference. Most current methodologies usually assume that
that performance characteristics on each link are statistically independent of all other links,
however this assumption is clearly violated due to common cross-traÆc 
owing through the
links. Assumptions of temporal stationarity are also made in many cases. In link-level delay
tomography, it is generally assumed that synchronized clocks are available at all senders and
receivers. Although many of the simplifying assumptions do not strictly hold, such \�rst-order"
approximations have been shown to be reasonable enough for the large-scale inference problems
of interest here [23, 24, 25, 26, 27, 28, 29, 30, 31, 32].

There are two common modes of communication in networks: multicast and unicast. In
unicast communication, each packet is sent to one and only one receiver. In multicast communi-
cation, the sender e�ectively sends each packet to a group of subscribing receivers. At internal
routers where branching occurs, e.g., node 1 in Figure 3, each multicast packet is replicated
and sent along each branching path. We now overview the di�erent approaches to link-level
network tomography that are enabled by the two modes of communication. Subsequently, we
provide two detailed examples of link-level network tomography applications.

3.1 Multicast Network Tomography

Network tomography based on multicast probing was one of the �rst approaches to the problem
[24]. Consider loss rate tomography for the network depicted in Figure 3. If a multicast packet
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is sent by the sender and received by node 2 but not by node 3, then it can be immediately
determined that loss occurred on link 3 (successful reception at node 2 implies that the multicast
packet reached the internal node 1). By performing such measurements repeatedly, the rate of
loss on the two links 2 and 3 can be estimated; these estimates and the measurements enable
the computation of an estimate for the loss rate on link 1.

To illustrate further, let �1, �2, and �3 denote the log success probabilities of the three links
in the network, where the subscript denotes the lower node attached to the link. Let bp2j3 denote
the ratio of the number of multicast packet probes simultaneously received at both nodes 2 and
3 relative to the total number received at node 3. Thus, bp2j3 is the empirical probability of
success on link 2 conditional upon success on link 3, which provides a simple estimate of �2.
De�ne bp3j2 in a similar fashion and also let bpi, i = 2; 3, denote the ratio of the total number of
packets received at node i over the total number of multicast probes sent to node i. We can
then write 0BBB@

log bp2
log bp3
log bp2j3
log bp3j2

1CCCA �

0BBB@
1 1 0
1 0 1
0 1 0
0 0 1

1CCCA
0B@ �1

�2
�3

1CA : (4)

A least squares estimate of f�ig is easily computed for this overdetermined system of equations.
Sophisticated and e�ective algorithms have been derived for large-scale network tomography
in [24, 48, 25, 49].

Similar procedures can be conducted in the case of delay distribution tomography. There
is a certain minimum propagation delay along each link, which is assumed known. Multicast
a packet from node 0 to nodes 2 and 3, and measure the delay to each receiver. The delay on
the �rst link from 0 to 1 is identical for both receivers, and any discrepancy in the two end-to-
end delay measurements is solely due to a di�erence in the delay on link 1 to 2 and the delay
link 1 to 3. This observation allows us to estimate the delay distributions on each individual
link. For example, if the measured end-to-end delay to node 2 is equal to the known minimum
propagation delay, then any extra delay to node 3 is incurred on link 1 to 3. Collecting delay
measurements from repeated experiments in which the end-to-end delay to node 2 is minimal
allows construction of a histogram estimate of the delay distribution on link 1 to 3. In larger
and more general trees, the estimation becomes more complicated. Advanced algorithms have
been developed for multicast-based delay distribution tomography on arbitrary tree-structured
networks [29, 48].

3.2 Unicast Network Tomography

Alternatively, one can tackle loss rate and delay distribution tomography using unicast mea-
surements. Unicast measurements are more diÆcult to work with than multicast, but since
many networks do not support multicast, unicast-based tomography is of considerable practical
interest. The diÆculty of unicast-based tomography is that although single unicast packet mea-
surements allow one to estimate end-to-end path loss rates and delay distributions, there is not
a unique mapping of these path-level parameters to the corresponding individual link-by-link
parameters. For example, referring again to Figure 3, if packets are sent from node 0 to nodes
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2 and 3 and nk and mk denote the numbers of packets sent to and received by receiver node k,
k = 2; 3, then  

log bp2
log bp3

!
�

 
1 1 0
1 0 1

!
| {z }

A

0B@ �1
�2
�3

1CA (5)

where bpk = mk=nk and �j, j = 1; 2; 3 denotes the log success probability associated with each
link. Clearly, a unique solution for f�jg does not exist since A is not full rank.

To address this challenge in unicast loss tomography, the authors of [25] and [28] inde-
pendently proposed methodologies based on measurements made using unicast, back-to-back
packet pairs. These measurements provide an opportunity to collect more informative statis-
tics that can help to resolve the link-level loss rates and delay distributions. A packet pair
consists of two packets sent one after the other by the sender, possibly destined for di�erent
receivers, but sharing a common set of links in their paths. In networks whose queues obey a
standard droptail policy,2 if two back-to-back packets are sent across a common link and one
of the pair is successfully transmitted across the link, then it is highly probable that the other
packet is also successful. Similarly, the two packets in each pair will experience roughly the
same delay through shared links. These observations have been veri�ed experimentally in real
networks [51, 27]. If one assumes that the probability of success for one packet conditioned
on the success of the other is approximately unity, then the same methodology developed for
multicast-based tomography (as described above) can be employed with unicast, packet-pair
measurements [27].

In the case of bandwidth tomography, the authors of [52] addressed the challenge of non-
uniqueness through clever use of the header �elds of unicast packets. The time-to-live (TTL)
�eld in each packet header indicates how many hops the packet should traverse. At each
router the packet encounters the TTL counter is decremented by one, and when the counter
reaches zero the next router discards the packet. The nettimer program described in [52]
uses \tailgating" to collect measurements: many packet-pairs are sent from the source, each
consisting of a large packet followed by a small packet. The TTL �eld of the large packet
is varied during the measurement period so that it is propagated through only a portion of
the path. The end-to-end delay measured by the small packet (in a relatively uncongested
network) is primarily comprised of the propagation delay experienced by the large packet,
enabling inference of the bandwidth of the subpath traversed by the large packet. Referring to
the simple triad network in Figure 3 for illustration, nettimer might send packet-pairs from
node 0 along links 1 and 2. If the TTL of the large packet is set to one, the tailgating smaller
packet measures the propagation delay on link 1.

Unicast measurement can be conducted either actively or passively. In the case of active
measurement, probe packets are sent by the senders speci�cally for the purpose of estimation.
In passive monitoring, the sender extracts data from existing communications (e.g., records
of TCP3 sessions) [49, 53]. Loss rate and delay distribution tomography methods have been

2A droptail queuing policy means that a packet is dropped by a queue only if it reaches the queue and there
is insuÆcient space in the bu�er. In active queuing strategies, such as random-early-drop (RED) [50], packets
can be dropped (with a certain probability) even if they have already entered the queue.

3Data transmission in the Internet is primarily handled by the Transmission Control Protocol (TCP) and
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developed speci�cally for unicast packet pairs in [25, 28, 14, 49]. Unicast packet stripes (triples,
quadruples, etc.) have also been investigated for loss rate tomography [27].

3.3 Example: Unicast Inference of Link Loss Rates

Link loss rates can be inferred from end-to-end, path-level unicast packet measurements using
the approximate linear model given in equations (1) when the numbers packet counts are large;
refer to Section 3.2. However, as stated earlier the discrete process of counting the number of
sent and received packets suggests the use of a discrete probability distribution in our modeling
and analysis. We give a brief introduction and example of this approach here, and for more
details the interested reader is referred to related papers [25, 26, 54].

The successful traversal of a single packet across a link can be reasonably modeled as a
sequence of Bernoulli events. Associate with the j-th link in the network a single parameter
governing the Bernoulli model. This parameter is the probability (rate) of successful trans-
mission on the link �j . The complete set for all m logical links in the network is denoted by
� � f�jg

m
j=1, which comprise the success rates that network loss tomography strives to identify.

Measurements are collected by sending nk single packets along the path to receiver k and
recording how many successfully reach the destination, denoted as mk. Determination of the
success of a given packet is handled by an acknowledgment sent from the receiver back to the
sender. For example, such acknowledgments are a built-in feature of TCP. The likelihood of
mk given nk is binomial (since Bernoulli losses are assumed) and is given by

l(mk jnk; pk) =

 
nk
mk

!
pmk

k (1� pk)
nk�mk ; (6)

where pk =
Q

j2P(0;k) �j and P(0; k) denotes the sequence of nodes in the path from the sender
0 to receiver k.

If the routing matrix A is full rank, then unique maximum likelihood estimates of the loss
rates can be formed by solving a set of linear equations. If A is not full rank, then there is
no unique mapping of the path success probabilities to the success probabilities on individual
links (between routers) in the path. To overcome this diÆculty, measurements are made using
back-to-back packet pairs or sequences of packets as discussed above [25, 28, 27].

If two back-to-back packets are sent to node j from its parent node �(j), then de�ne the
conditional success probability as

�j � Pr(1st packet �(j) ! j j 2nd packet �(j) ! j );

where �(j) ! j is shorthand notation denoting the successful transmission of a packet from
�(j) to j. That is, given that the second packet of the pair is received, then the �rst packet is
received with probability �j and dropped with probability 1� �j . It is anticipated that �j � 1

Internet Protocol (IP). TCP/IP were developed by a Department of Defense to allow cooperating computers
to share resources across a network. IP is responsible for moving packets of data from node to node and TCP
coordinates the delivery between the sender and receiver (server and client).
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for each j, since knowledge that the second packet was successfully received suggests that the
queue for link j was not full when the �rst packet arrived. Evidence for such behavior has
been provided by observations of the Internet [55, 51]. Denote the complete set of conditional
success probabilities by � � f�jg

m
j=1.

Suppose that each sender sends a large number of back-to-back packet pairs in which the
�rst packet is destined for one of its receivers k and the second for another of its receivers l. The
time between pairs of packets must be considerably larger than the time between two packets
in each pair. Let nk;l denote the number of pairs for which the second packet is successfully
received at node l, and let mk;l denote the number of pairs for which both the �rst and second
packets are received at their destinations. With this notation, the likelihood of mk;l given nk;l
is binomial and is given by

l(mk;l jnk;l; pk;l) =

 
nk;l
mk;l

!
p
mk;l

k;l (1� pk;l)
nk;l�mk;l ;

where pk;l is a product whose factors are � elements on the shared links and � elements on the
unshared links. The overall likelihood function is given by

l(mjn; p) �
Y
k

l(mkjnk; pk)�
Y
k;l

l(mk;ljnk;l; pk;l) (7)

The goal is to determine the vectors � and � that maximize (7). Maximizing the likeli-
hood function is not a simple task because the individual likelihood functions l(mk jnk; pk)
or l(mk;l jnk;l; pk;l) involve products of the � and/or � probabilities. Consequently, numer-
ical optimization strategies are required. The Expectation-Maximization (EM) algorithm is
an especially attractive option that o�ers a stable, scalable procedure whose complexity grows
linearly with network dimension [25]. An closely-related EM algorithm can be employed in
link-level delay density tomography [26, 56].

The link-level loss inference framework is evaluated in [49, 54] using the ns-2 network
simulation environment [5]. Measurements were collected by passively monitoring existing TCP
connections. The experiments involved simulation of the 12-node network topology shown in
Figure 4(a), and the estimated success probabilities determined using the network tomography
algorithm above are depicted in Figure 4. This topology re
ects the nature of many networks
| a slower entry link from the sender, a fast internal backbone, and then slower exit links to
the receivers.

In the simulations, numerous short-lived TCP connections were established between the
source (node 0) and the receivers (nodes 5-11). In addition, there is cross-traÆc on internal links,
such that in total there are approximately thirty TCP connections and thirty User Datagram
Protocol (UDP)4 connections operating within the network at any one time. The average
utilization of the network is in all cases relatively high All the TCP connections 
owing from
the sender to the receivers are used when collecting packet and packet-pair measurements (see
[49] for details on the data collection process). Measurements were collected over a 300 second
interval.

4UDP is a simpler protocol than TCP. UDP simply sends packets and does not receive an acknowledgment
from the receiver.
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The experiments were designed to ascertain whether the unicast link-level loss tomography
framework is capable of discerning where signi�cant losses are occurring within the network.
They assess its ability to determine how extensive the heavy losses are and to provide accurate
estimates of loss rates on the better performing links. Three traÆc scenarios were explored. In
Scenario 1, links 2 and 5 experience substantial losses, thereby testing the framework's ability
to separate cascaded losses. In Scenario 2, links 2 and 8 experience substantial loss, (testing
the ability to resolve distributed losses in di�erent branches of the network). In Scenario 3,
many more on-o� UDP and on-o� TCP connections were introduced throughout the topology.
Figure 4 displays the simulation results for each of the di�erent traÆc scenarios.

3.4 Example: Unicast Inference of Link Delay Distributions

When the link delays along a path are statistically independent the end-to-end delay densities
are related to the link delay densities through a convolution. Several methods for unraveling this
convolution from the end-to-end densities are: 1) transformation of the convolution into a more
tractable matrix operator via discretization of the delays [29, 26, 31]; 2) estimation of low order
moments such as link delay variance [48] from end-to-end delay variances which are additive
over the probe paths; 3) nonparametric density estimation methods in combination with EM
tomography algorithms [56]; 4) estimation of the link delay cumulant generating function (CGF)
[31, 47] from the end-to-end delay CGF's which are also additive over the probe paths. Here
we discuss the CGF estimation method from which any set of delay moments can be recovered.

Let Yi denote the total end-to-end delay of a probe sent along the i-th probe path. Then

Yi = ai1Xi1 + � � �+ aimXim; i = 1; : : : n (8)

where Xij is the delay of the i-th probe along the j-th link in the path and aij 2 f0; 1g are
elements of the routing matrix A. Here fXijg

n
i=1 are assumed to be i.i.d. realizations of a

random variable Xj associated with the delay of the j-th link.

The CGF of a random variable Y is de�ned as KY (t) = logE[etY ] where t a real variable.
When Y is a sum of a set fXjg

m
j=1 of statistically independent random variables the CGF

satis�es the additive property KY (t) =
Pm

j=1KXj
(t). Therefore, in view of the end-to-end

delay representation (8), and assuming independent Xi1; : : : ; Xim (spatial independence), the
vector of CGFs of the end-to-end probe delays fYig

m
i=1 of the i-th probe satis�es the linear

system of equations
KY (t) = AKX(t); (9)

where KY (t) = [KY1(t); : : : ;KYn(t)]
T and KX(t) = [KX1

(t); : : : ;KXm(t)]
T are n-element and

m-element vector functions of t, respectively.

The linear equation (9) raises two issues of interest: 1) conditions on A for identi�ability
of KX(t) from KY (t); and 2) good methods of estimation of KX(t) from end-to-end delay
measurements Yi, i = 1; : : : ; n.

When A is not full rank, only linear combinations of those link CGFs lying outside of the
null space of A can be determined from (9). We call such a linear combination an identi�able
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(d) Scenario 3: Mixed traÆc and
medium losses

Figure 4: Performance of the link-level loss tomography framework examined through ns-2
simulation of the network in (a). Sub�gures (b)-(d) show true and estimated link-level success
rates of TCP 
ows from the source to receivers for several traÆc scenarios, as labeled above. In
(b)-(d), the three panels in each display for the success probability (vertical axis) versus link 1-
11 (horizontal axis): (top) an example of true and estimated success rates with droptail queues,
(middle) true and estimated success rates with RED queues, and (bottom) mean absolute error
between estimated and true success rates over 10 independent trials of a 300 second observation
interval.
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subspace of CGFs. Depending on the routing matrix A, identi�able subspaces can correspond
to weighted averages of CGFs

Pm
j=1 �jKXj

(t) over a region of the network. This motivates a
multi-resolution successive re�nement algorithm for detecting and isolating bottlenecks, faults,
or other spatially localized anomalies. In such an algorithm large partially overlapping regions of
the network are probed with a small number of probes just suÆcient for each of the CGF linear
combinations to be sensitive to anomalous behavior of the aggregate regional delay distributions.
An example of the anomalous behaviors of interest is a sudden shift of the mass of the delay
distribution towards larger delay values, possibly indicating an emerging region of congestion.
If one of the regions is identi�ed as a potential site of anomalous behavior, a similar probing
process can be repeated on subregions of the suspected region. This process continues down
to the single link level within a small region and requires substantially fewer probe paths than
would be needed to identify the set of all link delay CGF's.

Estimation of the CGF vector KX(t) from an i.i.d. sequence of end-to-end probe delay
experiments can be formulated as solving a least squares problem in a linear model analogous
to (1):

K̂Y (t) = AKX(t) + �(t): (10)

where K̂Y is an empirical estimate of the end-to-end CGF vector and � is a residual error.
Di�erent methods of solving for KX result from assuming di�erent models for the statistical
distribution of the error residual. One model, discussed in [31], is obtained by using a method-
of-moments (MOM) estimator for KY and invoking the property that MOM estimators are
asymptotically Gaussian distributed as the number of experiments gets large. The bias and
covariance of K̂Y can then be approximated via bootstrap techniques and an approximate max-
imum likelihood estimate of KX may be generated by solving (10) using iteratively reweighted
least squares (LS). Using other types of estimators of KY , e.g. kernel based density estimation
or mixture models with known or approximatable bias and covariance, would lead to di�erent
LS solutions for KX .

The ns-2 network simulator was used to perform a simulation of the 4 link network shown
in Figure 5.

Link 3

Link 2

Link 4

Link 1

Probe 5

Probe 2
Probe 3

Probe 4

Probe 1

Figure 5: Unicast delay estimation probe routing used in ns-2 simulation. Tailgating can be used to
emulate the internal probes 3,4,5.
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Each link was a Drop-Tail queue with bu�er size of 50 packets. The internal \bottleneck"
link, link 3 in Fig. 5, was assigned bandwidth 5Mbps with latency 50ms. Links 1, 2 and 4 were
assigned bandwidths 1Mbps and latency of 10ms. The background traÆc consisted of both
Exponential on-o� UDP traÆc and TCP traÆc (links 1-4 were assigned di�erent numbers of
background UDP and TCP traÆc sources in UDP/TCP proportions 6/3, 5/2, 8/4, and 4/2,
respectively). Probes were generated as 40 byte UDP packets at each sender node according
to a Poisson process with mean interarrival time being 16ms and rate being 20Kb/sec. The
number of probes per path was 3000. Probe-derived link CGF estimators with and without
bias correction were computed and compared with the true link CGF's (computed from direct
link measurements of background traÆc alone). Di�erences between the true CGF's and the
estimated CGF's can be attributed to both statistical estimation error and systematic bias
due to probe-induced perturbations of background traÆc. The link CGF estimate without
bias correction was obtained by �nding the LS �t to the vector KX(t) in relation (10) with
K̂Y (t) obtained by straight empirical averaging over the N = 3000 measured probe delays.
Speci�cally, the i-th element of K̂Y (t) is the raw sample average K̂Yi(t) = N�1PN

k=1 e
tYik ,

where fYikg
N
k=1 are the probe delays along the i-th probe path among those indicated in Fig. 5.

The bias corrected link CGF was estimated using the bootstrap procedure described in [31]. In
this procedure we aggregated 40 separate estimates of K̂Y (t) each computed over a randomly
selected subset of 2800 probe delays taken from the 3000 measured probe delays.
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Figure 6: Estimates of the CGF function KXj
(t); t � 0; for links 1 and 3 compared to the true CGF

function.

Figure 6 shows the trajectories of the CGF estimates with and without bias correction in
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addition to the true CGF for links 1 and 3. Table 1 shows the average squared error per unit
t of the link CGF estimates over the range t 2 [�200; 200]. These estimates were based on
applying ordinary LS to (10) with and without bootstrap bias correction. Note from the table
that the average MSE of the bias corrected CGF estimate is almost 9% lower than the average
MSE incurred by the raw CGF estimate.

Link 1 2 3 4

MSE of K̂Xj
0.000909 0.000421 0.000974 0.000325

MSE of K̂ 0
Xj

0.001171 0.000327 0.001026 0.000363

Table 1: MSE of K̂Xj
(bias correction) and K̂ 0

Xj
(no bias correction) for estimated link CGF's.

Link 3 is bottleneck link.

We next illustrate the application of the CGF estimation technique to bottleneck detection.
De�ne a bottleneck as the event that a link delay exceeds a speci�ed delay threshold. The
Cherno� bound speci�es an upper bound on the probability of bottleneck in the j-th link in
terms of the CGF

P (Xj � Æ) � min
t>0

�
e�tÆe

tKXj
(t)
�
: (11)

In Table 2, we show the estimated Cherno� bounds Pj on the bottleneck probability P (Xj � Æ).
These were estimated by plugging bias corrected CGF estimates into the right hand side of (11).
Here Æ = 0:005sec. Note that the estimated Cherno� bounds correctly identify the bottleneck
link (link 3) as that link having probability close to 1. In particular if we set the following
criterion for detection of a bottleneck: \the probability that Xj exceeds 0:005sec" is at least
0:5, we see that the estimated Cherno� bound correctly identi�es link 3 as the bottleneck link.

Link 1 2 3 4

Pj 0.439 0.415 0.964 0.392

Table 2: Estimated Cherno� bounds Pj on P (Xj � 0:005sec). Bottleneck at link 3 is correctly
identi�ed by its high probability of large delay.

3.5 Example: Topology Identi�cation

Most of the network tomography problems addressed in earlier sections dealt with the iden-
ti�cation of network performance parameters, with full knowledge of the network (routing)
topology. The network topology is expressed by the matrix A in equation (1). Knowledge of
A is crucial for most network tomography problems, however such knowledge is not always
readily available. Most existing tools for network topology mapping, such as traceroute, rely
on the cooperation of routers and thus can only reveal those portions of the network that are
functioning properly and wish to be known. These cooperative conditions are often not met in
practice, and may be increasingly uncommon as the network grows and privacy and proprietary
concerns increase.

For situations in which common tools such as traceroute are not applicable, a number of
methods have been proposed for the identi�cation of network (routing) topology based on end-

18



to-end measurements that measure the degree of correlation between receivers [30, 40, 41, 43,
44, 45]. Most of these approaches have concentrated on identifying the tree structured topology
connecting a single sender to multiple receivers. It is assumed that the routes from the sender
to the receiver are �xed. With only end-to-end measurements, it is only possible to identify the
logical topology de�ned by the branching points between paths to di�erent receivers.

The key idea in most of the existing topology identi�cation methods is to collect measure-
ments at pairs of receivers that behave (in an average sense) as a monotonic, increasing function
of the number of shared links or queues in the paths to the two receivers. A simple example
is the case of delay covariance. If two receivers share some portion of their paths, then the
covariance between the end-to-end delays to the two receivers is re
ective of the sum of the
variances on the shared links (assuming the delays are not correlated on unshared links). The
more shared links (larger shared portion of their paths), the larger the covariance between the
two.

Metrics possessing this type of monotonicity property can be estimated from a number
of di�erent end-to-end measurements including counts of losses, counts of zero delay events
(utilization), delay correlations, and delay di�erences [30, 40, 41, 42, 43, 45, 44]. Using such
metrics, topology identi�cation can be cast as a Maximum Likelihood estimation problem as
follows. The estimated metrics x � fxi;jg, where the indices i; j refer to di�erent pairs of
receivers, can be interpreted as observations of the true metric values 
 � f
i;jg contaminated
by some randomness or noise. The estimated metrics are randomly distributed according to a
density (whose precise form depends on the contamination model) that is parameterized by the
underlying topology T and the set of true metric values, written as p(xj
; T ). The estimated
metrics x are �xed quantities and hence when p(xj
;T ) is viewed as a function of T and 
 it
is called the likelihood of T and 
. The maximum likelihood tree is given by

T � = argmax
T 2F

max

2G

p(xj
;T ); (12)

where F denotes the forest of all possible tree topologies connecting the sender to the receivers
and G denotes the set of all metrics satisfying the monotonicity property.

The likelihood optimization in (12) is quite formidable and we are not aware of any method
for computing the global maximum except by a brute force examination of each tree in the
forest. Consider a network with N receivers. A very loose lower bound on the size of the forest
F is N !=2. For example, if N = 10 then there are more than 1:8� 106 trees in the forest. This
explosion of the search space precludes the brute force approach in all but very small (logical)
networks. While determining the globally optimal tree is prohibitive in most cases, suboptimal
algorithms based on deterministic and Monte Carlo optimization methods can provide good
estimates of the topology. As far as deterministic algorithms are concerned, the Deterministic
Binary Tree (DBT) classi�cation algorithm proposed in [40] is a representative example. The
DBT algorithm is a recursive selection and merging/aggregation process that generates a binary
tree from the bottom-up (receivers to sender). The greedy nature of the DBT algorithm can
lead to very suboptimal results. To avoid this pitfall, a Markov Chain Monte Carlo (MCMC)
procedure has been proposed to quickly search through the \topology space," concentrating
on regions with the highest likelihood [44]. The most advantageous attribute of the MCMC
procedure is that it attempts to identify the topology globally, rather than incrementally (and
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suboptimally) a small piece at a time.

To illustrate the topology identi�cation problem, consider the network topology depicted in
Figure 7(a). This is the true topology connecting a sender (at Rice University) to a number
of other computers in North America and a couple in Europe. In this case, traceroute was
used to obtain the true topology (in many cases this may not be possible, but here it provides
a convenient \ground-truth" for our experiment). End-to-end measurements using a special-
purpose unicast probes called \sandwich" probes were used to obtain a set of metrics satisfying
the monotonicity property [44]. The sandwich probing scheme is delay-based, but it measures
only delay di�erences, so that no clock synchronization is required. Figure 7(b) depicts the
most commonly identi�ed topology (over many di�erent experiments on di�erent days and at
di�erent times of day). The identi�ed topology generally agrees with the true topology.

IST Lisboa U. Wisc . Illinois MSUBerkeley

Rice ECE

Portugal

Rice

TX

IND

IST Lisboa U. Wisc . Illinois MSUBerkeley

Rice ECE

Portugal

Rice

(a) (b)

Figure 7: (a) The topology of the network used for Internet experiments. (b) Most commonly estimated
topology using the MPL criterion. The link between TX and IND is not detected and an extra common
link is associated with the Rice clients, but otherwise the estimated topology is a faithful representation
of the true topology.

4 Origin-Destination Tomography

Origin-destination tomography is essentially the antithesis of link-level network tomography:
the goal is the estimation of path-level network parameters from measurements made on individ-
ual links. By far the most intensively studied origin-destination network tomography problem is
the estimation of origin-destination (OD) traÆc from measurable traÆc at router interfaces. In
privately-owned networks, the collection of link traÆc statistics at routers within the network
is often a far simpler task than performing direct measurement of OD traÆc. The OD traÆc
matrix, which indicates the intensity of traÆc between all origin-destination pairs in a network,
is a key input to any routing algorithm, since the link weights of the Open Shortest Path First5

(OSPF) routing protocol are related to the traÆc on the paths. Ideally, a data-driven OD

5Open Shortest Path First (OSPF) is a routing protocol developed for IP networks. OSPF is a link-state

routing protocol that calls for the sending of link-state advertisements to all other routers in the same hierarchical
area. A link state takes the form of a weight, e�ectively the cost of routing via that link.
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matrix should be central to the routing optimization program.

There are currently two ways to obtain OD traÆc counts. Indirect methods collect sums of
OD traÆc counts and are considered in [22, 33, 36, 34]; a direct method to measure OD traÆc
counts via software such as NetFlow supported by Cisco routers is described in [34, 57]. Both
approaches need the cooperation of the routers in the network, but this is not problematic for
privately-owned networks. The link traÆc counts at routers are much easier to collect relative
to the direct approach via NetFlow and lead to a linear inverse problem. There are noticeable
features about this particular inverse problem worthy of elaboration. Firstly, the OD traÆc
vector to be estimated is not a �xed parameter vector, but a random vector, denoted by x;
secondly, the linear equation (1) is used without the error term � (stochastic variability is
captured in x). Although A is singular as in other cases discussed, the techniques in [22, 33,
36, 34] use statistical means to induce a regularization enabling the recovery of the entire x
(or the traÆc intensities underlying x). Moreover, the most recent work [34] addressing this
problem also deals with the time-varying or nonstationary aspect of the data.

Vardi was the �rst to investigate the OD network tomography problem. In [22] he studies
a network with a general topology, using an independent and identically distributed (i.i.d.)
Poisson model for the OD traÆc byte counts. He speci�es identi�ability conditions under the
Poisson model and develops a method that uses the EM algorithm on link data to estimate Pois-
son parameters in both deterministic and Markov routing schemes. To mitigate the diÆculty in
implementing the EM algorithm under the Poisson model, he proposes a moment method for
estimation and brie
y discusses the normal model as an approximation to the Poisson. Related
work treated the special case involving a single set of link counts and also employed an EM
algorithm [36]. A Bayesian formulation and Markov Chain Monte Carlo estimation technique
has also been proposed [33].

Cao et al. [34] use real data to revise the Poisson model and to address the non-stationary
aspect of the problem. Their methodology is validated through comparison with direct (but
expensive) collection of OD traÆc. Cao et al. represent link count measurements as summations
of various OD counts that were modeled as independent random variables. (Even though TCP
feedback creates dependence, direct measurements of OD traÆc indicate that the dependence
between traÆc in opposite directions is weak. This renders the independence assumption a
reasonable approximation.) Time-varying (or non-stationary) traÆc matrices estimated from
a sequence of link counts were validated on a small subnetwork with 4 origins/destinations by
comparing the estimates with actual OD counts that were collected by running Cisco's NetFlow
software on the routers. Such direct point-to-point measurements are often not available because
they require additional router CPU resources, which can reduce packet forwarding eÆciency,
and involve a signi�cant administrative burden when used on a large scale.

Let x = (x1; : : : ; xn)
T denote the unobserved vector of corresponding byte counts for all

OD pairs during a given time interval in the network. Here T indicates transpose and x is the
`traÆc matrix' even though it is arranged as a column vector for convenience. One natural way
to enumerate all the OD variables into a vector is to �rst enumerate all the routers and then the
end nodes or origin-destination nodes by 1 through, say, I, and make these indices blocked by
routers: the end nodes connected to the �rst router in the �rst block, and those connected to the
second router in the second block, and so forth. Then, to form the OD vector, we put the OD
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traÆc accounts in the order (1; 1); (1; 2); :::; (1; I); (2; 1); (2; 2); :::; (2; I); :::; (I; 1); (I; 2); :::; (I; I),
where (i; j) is the index of the OD traÆc from the ith end node to the jth end node. Let y =
(y1; : : : ; ym)

T denote the observed column vector of incoming/outgoing byte counts measured
on each router link interface during a given time interval, again blocked into �rst the link
measurements on the interfaces of the �rst router and so on. One element of x, for example,
corresponds to the number of bytes originating from a speci�ed origin node to a speci�ed
destination node, whereas one element of y corresponds to bytes sent from the origin node
regardless of their destination. Thus each element of y is a sum of selected elements of x, so

y = Ax (13)

where A is de�ned as before, an m� n routing matrix of 0's and 1's that is determined by the
routing scheme of the network. The orders of elements in x and y determine the positions of
the 0's and 1's of A accordingly. The work of [34] only considers �xed routing, i.e. there is only
one route from an origin to a destination. The unobserved OD byte counts are modeled as

xi � normal(�i; ��
c
i ); independently; (14)

where c is a �xed power constant (its speci�cation is found to be robust in the sense that both
c = 1 and c = 2 work well with the Lucent network data as shown in [34, 35]). This implies

y � normal(A�; A�AT ); (15)

where

� = (�1; : : : ; �n)
T ; and � = � diag(�c1; : : : ; �

c
n):

Here � > 0 is the vector of OD mean rates. � > 0 is a scale parameter that relates the variance
of the counts to their mean, since usually larger counts have larger variance. The mean-
variance relationship is necessary to ensure the identi�ability of the parameters in the model.
Heuristically, under this constraint, the covariances between the y's give the identi�ability of
the parameters up to the scale parameter � which can be determined from the expectation of
a y.

Cao et al. [34] address the non-stationarity in the data using a local likelihood model (cf.
[58]); that is, for any given time t, analysis is based on a likelihood function derived from the
observations within a symmetric window of size w = 2h+ 1 around t (e.g., in the experiments
described below, w = 11 corresponds to observations within about an hour in real time). Within
this window, an i.i.d. assumption is imposed (as a simpli�ed and yet practical way to treat the
approximately stationary observations within the window). Maximum-likelihood estimation
(MLE) is carried out for the parameter estimation via a combination of the EM algorithm
and a second-order global optimization routine. The component-wise conditional expectations
of the OD traÆc, given the link traÆc, estimated parameters, and the positivity constraints
on the OD traÆc, are used as the initial estimates of the OD traÆc. The linear equation
y = Ax is enforced via the iterative proportional �tting algorithm (cf. [59, 60]) to obtain the
�nal estimates of the OD traÆc. The positivity and the linear constraints are very important
�nal steps to get reliable estimates of the OD traÆc, in addition to the implicit regularization
introduced by the i.i.d. statistical model.
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To smooth the parameter estimates, a state-space model is imposed in [34] on the logarithm
of the parameters �'s and � over the time windows of size w = 2h+ 1 (in our implementation
for the simple network of Router 1, we use h=5 or w=11). Let �t = (�t; �t) be the parameter
vector for the tth time window. We assume the following random walk model for the evolution
of the log parameters:

log(�t) = log(�t�1) + vt;

where vt � normal(0; D), independent for di�erent t, and D is a diagonal matrix obtained
using estimates of �t in the MLE approach described earlier. Given the parameters, the link
counts are assumed i.i.d. as before:

(Yt�h; :::; Yt; :::; Yt+h)
T j�t � i:i:d: Normal(A�t; A�tA

T ):

This leads to a two-pass algorithm on the data. For the second pass, inference at time t is
carried out in a sequential manner. We �rst obtain the posterior probability density p(�t�1)
based on the �rst t � 1 windows of data, then the prior probability density �(�t) is updated
via the random walk equation, and then the maximum a posterior estimate of �t via numerical
optimization using the observations in the tth time window and the prior.

This state-space model does improve on the parameter estimates, but not so much on the
estimated OD traÆc xt, which implies an insensitivity of the �nal OD traÆc estimates. This
insensitivity or robustness to changes in parameter estimates is probably due to the fact that
even in the MLE approach, positivity and linear constraints are imposed on the OD estimates,
and these constraints override the improvements brought about by the state-space model.

4.1 Example: Time-varying OD TraÆc Matrix Estimation

Figure 8 is a network at Lucent Technologies considered in [34, 35]. Figures 9 and 10 are taken
from [34]: traÆc plots only for the subnetwork around Router 1 with four origin-destination
end nodes. These plots show the validation (via NetFlow) and estimated OD traÆc based on
the link traÆc. Figure 9 gives the full scale and Figure 10 is the zoomed-in scale (20�). It
is obvious that the estimated OD traÆc agrees well with the NetFlow measured OD traÆc
for large measurements (> 50 K bytes/sec), but not so well for small measurements (< 20 K
bytes/sec) where the Gaussian model is a poor approximation. From the point of view of traÆc
engineering, it is adequate that the large traÆc 
ows are inferred accurately. Hence for some
purposes such as planning and provisioning activities estimates of OD traÆc could be used as
inexpensive substitutes for direct measurements.

Even though the method described in [34] uses all available information to estimate parame-
ter values and the OD traÆc vector x, it does not scale to networks with many nodes. In general,
if there are Ne edge nodes, the number of 
oating point operations needed to compute the MLE
is at least proportional to N5

e . A scalable algorithm that relies on a divide-and-conquer strategy
to lower the computational cost without losing much of the estimation eÆciency is proposed in
[35].
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Figure 8: A network at Lucent Technologies

5 Conclusion and Future Directions

This article has provided an overview of the area of large scale inference and tomography in
communications networks. As is evident from the limited scale of the simulations and experi-
ments discussed in this article, the �eld is only just emerging. Deploying measurement/probing
schemes and inference algorithms in larger networks is the next key step. Statistical signal
processing will continue to play an important role in this area and here we attempt to stimulate
the reader with an outline of some of the many open issues. These issues can be divided into
extensions of the theory and potential networking applications areas.

The spatio-temporally stationary and independent traÆc and network transport models
have limitations, especially in tomographic applications involving heavily loaded networks.
Since one of the principal applications of network tomography is to detect heavily loaded links
and subnets, relaxation of these assumptions continues to be of great interest. Some recent
work on relaxing spatial dependence and temporal independence has appeared in unicast [31]
and multicast [24] settings. However, we are far from the point of being able to implement

exible yet tractable models which simultaneously account for long time traÆc dependence, la-
tency, dynamic random routing, and spatial dependence. As wireless links and ad hoc networks
become more prevalent spatial dependence and routing dynamics will become dominant.

Recently, there have been some preliminary attempts to deal with the time-varying, non-
stationary nature of network behavior. In addition to the estimation of time-varying OD traÆc
matrices discussed in Section 4, others have adopted a dynamical systems approach to handle
nonstationary link-level tomography problems [14]. Sequential Monte Carlo inference techniques
are employed in [14] to track time-varying link delay distributions in nonstationary networks.
One common source of temporal variability in link-level performance is the nonstationary char-
acteristics of cross-traÆc. Figure 11 illustrates this scenario and displays the estimated delay
distributions at di�erent time instances (see [14] for further details).

There is also an accelerating trend toward network security that will create a highly unco-
operative environment for active probing | �rewalls designed to protect information may not
honor requests for routing information, special packet handling (multicast, TTL, etc.), and other
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network transport protocols required by many current probing techniques. This has prompted
investigations into more passive traÆc monitoring techniques, for example based on sampling
TCP traÆc streams [49]. Furthermore, the ultimate goal of carrying out network tomography
on a massive scale poses a signi�cant computational challenge. Decentralized processing and
data fusion will probably play an important role in reducing both the computational burden
and the high communications overhead of centralized data collection from edge-nodes.

The majority of work reported to date has focused on reconstruction of network parameters
which may only be indirectly related to the decision-making objectives of the end-user regard-
ing the existence of anomalous network conditions. An example of this is bottleneck detection
which has been considered in [47, 32] as an application of reconstructed delay or loss estimation.
However, systematic development of large scale hypothesis testing theory for networks would
undoubtedly lead to superior detection performance. Other important decision-oriented appli-
cations may be detection of coordinated attacks on network resources, network fault detection,
and veri�cation of services.

Finally the impact of network monitoring, which is the subject of this article, on network
control and provisioning could become the application area of most practical importance. Ad-
mission control, 
ow control, service level veri�cation, service discovery, and eÆcient routing
could all bene�t from up-to-date and reliable information about link and router level perfor-
mances. The big question is: can signal processing methods be developed which ensure accurate,
robust and tractable monitoring for the development and administration of the Internet and
future networks?
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Figure 9: Full-scale time series plots of OD traÆc on Feb. 22, 1999 for Router 1 sub-network
with 4 origins/destinations. In the lower-left 4�4 matrix, the rows (from TOP down) correspond
to corp, local, switch and fddi and the columns (from RIGHT to LEFT) correspond to corp,
local, switch and fddi. These 4 � 4 main panels correspond to the 16 OD pairs. For example,
the (1,2) panel is corp ! switch. The 8 marginal panels (above and to the right of the main
matrix) are the observed link traÆc used to infer the 16 OD traÆc pairs. The top-right corner
shows the total observed link traÆc. Xhat is the estimated OD traÆc and X is the observed
OD traÆc. At this time-scale it is impossible to di�erentiate between estimated and observed
OD traÆc in most panels of the matrix.
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Figure 10: Time series plots of OD traÆc like in Fig. 6, except that the scale is zoomed in.
At this zoomed-in time-scale it is easier to di�erentiate between estimated and observed OD
traÆc in most panels, particularly when there is a small traÆc load.
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Figure 11: Performance of the sequential Monte Carlo tracking of time-varying link delays from
end-to-end measurements. (a) Single source, four receiver simulated network with nonstationary
cross-traÆc. (b) True delay distributions (red) and estimates (blue) as a function of time.
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