NISS

Decision-Theoretic Framework for Data Quality

Alan Karr March 3, 2005

Summary

- Specific context and testbed database
- Specific set of DQ strategies
- Evaluation of strategies
- Predictive statistical models

Notation

- $\mathcal{D}^{true} =$ true database (flat file of cases \times attributes
- ullet ${\mathcal D}^{\mathrm{pre}}=\mathrm{database}$ prior to clean-up
- S =clean-up strategy
- $\mathcal{D}^{\text{post}}(S) = \text{database resulting from applying}$ S to \mathcal{D}^{pre}

_	
-	

Measuring Effectiveness

Conceptually,

$$Eff(S) = d(\mathcal{D}^{post}(S), \mathcal{D}^{true}),$$

where d is a data quality metric

Inference-Based Effectiveness

More meaningfully,

 $\mathrm{Eff}(S,P,\mathcal{D}^{\mathrm{pre}}) = d_P(\mathcal{D}^{\mathrm{true}},\mathcal{D}^{\mathrm{pre}}) - d_P(\mathcal{D}^{\mathrm{true}},\mathcal{D}^{\mathrm{post}}(S)),$ where

- ullet P= inference procedure that can be applied to the data
- d_P = function measuring the difference in the results of P applied to two different databases

What if Truth is Not Known?

Use

$$\text{Eff}^{\text{naive}}(S, P, \mathcal{D}^{\text{pre}}) = d_P(\mathcal{D}^{\text{pre}}, \mathcal{D}^{\text{post}}(S)).$$

Relevant points:

- ullet + sign for $\operatorname{Eff^{naive}}(S,P,\mathcal{D}^{\operatorname{pre}})$ may not signal improvement
- Small values of $\operatorname{Eff^{naive}}(S,\,P,\,\mathcal{D}^{\operatorname{pre}})$ mean no improvement

Prediction

- $\{S(\theta): \theta \in \Theta\} =$ parameterized family of clean-up strategies
- Goal: solve

$$\theta^* = \underset{\theta}{\operatorname{arg max}} \operatorname{Eff}(S(\theta), P, \mathcal{D}^{\operatorname{pre}})$$

 \bullet Problem: only know $\mathrm{Eff}(\theta)$ for a few values of θ

Predictive Models

Build statistical model

 $\widehat{\mathrm{Eff}}(\theta) = f(\theta) + \mathrm{uncertainty}$

Challenges:

- "Form" of the model
- Nature of the uncertainties
- What data are necessary to fit the model
- Validation