Expression Profiling / Microarray / Data Analysis at Amgen

Changes in Drug Development: Feeding the Beast

Dan Fitzpatrick, PhD Expression Profiling & Pharmacogenomics Department Amgen, Inc.

Seminar Outline

Here we want to go Here we want to go

#Instruments of change

#The Amgen experience

The High Stakes in Pharmaceuticals

•Global R&D increased 14% in 1999 to 24 billion.

•Top 11 geographical markets grew 9% to \$202 billion in sales.

•U.S. market valued at \$83 billion.

...And High Pressure

•U.S. FDA approved 35 new molecular entities in 1999 (30 in 1998, 39 in 1997).

•36 branded pharmaceuticals (\$1.9 billion in sales) came off patent protection in 1999.

•Between 2000 & 2005, 173 products representing \$30 billion in sales to lose patent protection.

C&E News, Jan. 17, 2000

The Gap Between R&D and New Drugs

Year	U.S. R&D (Billions)	New molecular entities FDA approved	
1993	\$10.5	25	
1994	11.1	22	
1995	11.9	28	
1996	13.6	53	
1997	15.5	39	
1998	17.2	30	
1999	20.1	35	

Top Five Drug Targets

#56 (11%) brands 29% of prescription sales △HMG CoA reductase (hypercholesterolemia) △Proton pump (ulcers) △Serotonin transporter (depression) △Calcium channel (hypertension) Angiotensin converting enzyme (hypertension)

A Piece of the Pie

HMG-CoA

Reductase

Inhibitors

Company
Merck & Co.
Warner-Lambert/Pfizer
Bristol-Myers Squibb
Sankyo
Merck & Co.
Novartis
Bayer/SKB
Sanofi

Why Pharmaceutical Executives Sleep like Babies at Night.

• 'Return' on R&D diminishing

•Potential for reduced government subsidization and/or HMO reimbursement

- •Investor pressure
- Biologics

Biologics Come of Age

<u>Drug</u>	<u>Company</u>	Target	Indication
1. Abciximab	Centocor	Gp IIb/IIIa	Thrombosis Restenosis M.I./ Angina Stroke
2. Infliximab	Centocor	TNF	RA Crohn's Disease
3. Trastuzumab <i>(HERCEPTIN)</i>	Genentech	HER2 protein	Cancer
4. Rituximab	IDEC	CD20 antigen	Cancer Thrombocyt./Anemia Syst. Lupus Eryth.

Why Pharmaceutical Executives Sleep like Babies at Night.

• 'Return' on R&D diminishing

•Potential for reduced government subsidization and/or HMO reimbursement

- Investor pressure
- Biologics

•The Red Queen

The Red Queen

"A slow sort of country!" said the Queen. "Now, here, you see, it takes all the running you can do, to keep in the same place. If you want to get somewhere else, you must run at least twice as fast as that!"

> Through the Looking Glass Lewis Carroll

Four Obvious Words

•Faster....

•More...

•Better...

•Cheaper

Cost of Drug Development

- Research: Discovery to Preclinical (\$50 MM)
- Process & Manufacturing Research (\$75 MM)
- Preclinical Development (\$75 MM)
- Clinical Development (\$300 MM)

Total: \$500 MM / 10 yrs

The Ultimate Goal

Changes in Drug Development

Parameter	Old	New
Drugs	Dominated by handful of "Blockbusters"	1000's of "Niche" drugs; few Blockbusters
Treat Underlying Cause	Generally NO	YES, with better understanding of disease
Target Identification & Validation	Academia; Classical Biochem, Mol Biol; One-off approach; Public Domain	Industry; Genomics; Systematic approach; Proprietary
Number of Targets	Less than a few hundred	1000's
Clinical Trials	High failure rate	Low failure by applying pharmacogenomics

Seminar Outline

Here we want to go Here we want to go

#Instruments of change

#The Amgen experience (Expression
Profiling)

New Paradigm

Better understanding of disease (genomics technologies)

Selection of the best target from pool of all candidates

Rapid identification & optimization of leads (drugs) for that target, in some cases will occur simultaneously with target selection/validation

High rate of success in the clinic

Change Drivers

#Genomics Technologies (Pharmacogenomics)
#Combinatorial Chemistry
#Structural Chemistry
#Ultra-High Throughput Screening

Pharmacogenomics

*The application of genomics technologies to the way that drugs are discovered, developed & used

- ☐Genome-wide sequencing
- ☑ Expression profiling
- SNP analysis (pharmacogenetics)
- Proteomics

Expression Profiling

High-throughput, parallel analysis of expression of 1000's of genes

KVariety of technologies

EST sequencing, SAGE, AFLP, DNA Microarray

Microarray Technology

Microarray: Modified Dot Blots....

Prepare multiple DNA 'targets'. Spot DNA onto a surface. Fix. Synthesize labeled cDNA probe. Hybridize probe. Wash & detect bound fluor.

The Stanford/Incyte Approach to Microarray

Expression Profiling Component of Pharmacogenomics

#Target genes and pathways

%Toxicology / Off-target profiling %Surrogate markers for clinical studies %Stratify population for clinical trials %Improve drugs/candidates/failures

Change Drivers

#Genomics Technologies (Pharmacogenomics)
#Combinatorial Chemistry
#Structural Chemistry
#Ultra-High Throughput Screening

Proteomics

High-throughput, parallel analysis of expression of 1000's of proteins

- Separational Sector Sector
- Hultiple roles in discovery/development: theoretically applicable to all phases that transcriptional expression profiling can address.

Seminar Outline

Here we want to go Here we want to go

#Instruments of change

%The Amgen experience (Expression Profiling)

Expression Profiling History at Amgen

Examples of Expression Profiling Impact

Murine Genomic Project OPG (osteoprotegerin) B7-RP1 (B7-related protein 1)

Microarray IL-13/Hodgkin's disease HER2 Study

HER-2/neu Biology

<u>Clinical</u>

- ₭ Amplified in ~25% of breast CA
- Hoor prognosis: Shorter survival
- Correlation w/ ER negativity & failure of anti-estrogen therapy

Experimental

- % Increased proliferation in vitro (plastic & soft agar)
- Increased growth in xenograft models
- **#** Tamoxifen resistance
- Morphologic changes
- Chers: motility, invasion, apoptosis, DNA repair

Cell Line Models

HER-2/*neu* Overexpression: Decreased Contact Inhibition and Increased Proliferation

MCF-7

H2

cDNA Microarrays

Self RNA test

MCF-7/H2 vs CN

490 elements $\Delta > 2.5$ fold

TGF-^ß Pathway

Ligands	cDNA	filter	Induced targets	cDNA	filter
TGF-ß2 (M19154)	2.5	2.0	CTGF (M92934)	5.2 ^{*3}	4.4
TGF-ß3 (J03241)	-	2.8	Cyr61(AF031385)	3.8 ^{*2}	-
BMP-3 (M22491)	-	2.8	B-lg-H3 (M77349)	2.6	-
BMP-5 (M60314)	7.1	4.5	Endothelin1(J05008)	2.7	-
BMP-7 (M60316)	2.5	3.9	Timp-2 (J05593)	2.9	2.0
			Col3A1(X14420)	2.9 ^{*2}	4.4
Receptors			Col5A1(M76729)	4.0 ^{*3}	
TBR II (D50683) Endoglin (X72012)	2.5 2.9	-	Col18A1(AF018081)	3.7	4.7
Modulators			Repressed targets		
Evi-1 (S82592)	3.4	-	hTRT-1(S82592)	8.9*4	-

MCF-7/HER-2 cells are Resistant to Growth Inhibition by TGF-ß1

ℜ One aspect of Herceptin's efficacy may be its ability to increase sensitivity to growth inhibition by TGF-β.

ℜ The microarray profile may be a "signature" of TGFß resistance and thus a screening assay for the efficacy of anti-HER-2/*neu* therapeutics.

Expression Profiling at Amgen

Microarray Format:

Incyte-derived comprehensive chips Incyte catalog Amgen custom-made

Model of expression profiling usage: User-initiated

Analysis of Expression Data

% End-user sets up experiment through web-based
front-end (EPIMS)

Expression data managed using Resolver (Rosetta)

🗠 Basic sorting

 \square Clustering:

⊠by gene

- within experiments
- global

⊠by chip

🔀 Internal gene index

Clones linked by live annotation

Amgen User Experience

Ordering experiment: webbased EPIMS (Expression Profiling Information Management System)

Experimental analysis: web-based Resolver suite.

Multiple Modules for Visualization & Analyses

Multi-tiered Contact Points for Customers

Expression Profiling Component of Pharmacogenomics

#Target genes and pathways

%Toxicology profiling %Surrogate markers for clinical studies %Stratify population for clinical trials %Improve drugs/candidates/failures

Expression Profiling in Drug Development

Discovery

Target validation

- Characterization of intervention leads
- Animal models
- **Clinical trials**

Expression Profiling in Drug Development

Discovery

 Target validation
 Characterization of intervention leads
 Animal models

Clinical trials

Expression Profiling

Until Now:

Enabling Technology for discovery

Vision for Future:

Interface Technology bridging multiple phases of drug development

Acknowledgments

<u>Amgen</u> Matt Moyle

EP&P Dept. RIAT Dept.

Frank Calzone Elaina Cajulis <u>UCLA</u> Cindy Wilson Dennis Slamon Lillian Ramos Taylor Olsen Jennifer Sanders Lina Li