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Goals

•
 

Introduce fundamental problems and methods 
of statistical disclosure limitation (SDL)

•
 

Present concrete examples
•

 
Stimulate questions and discussion



Program
9:30 AM Introduction, Risk-Utility Formulations, Data Swapping

Alan Karr, NISS
11:00 Tabular Data

George Duncan, Carnegie Mellon University
12:00 N Lunch (on your own)
1:00 PM Remote Access Servers: Alan Karr

1:30 PM Synthetic Data and Related Topics
Jerome Reiter, Duke University

2:30 PM Break
3:00 PM Research Frontiers: Alan Karr
4:00 PM Open Discussion



Introduction



Some Terminology

•
 

Data: flat file of subject-indexed records (rows) 
containing attributes (columns) of the subjects
–

 
Attributes may be categorical or numerical 

–
 

Ignores a lot of other things that really are data: Images, 
sound, video, free-form text, … 

–
 

Ignores relational databases

•
 

Data owner (federal statistical agency)
•

 
Legitimate user

•
 

Intruder



The Fundamental Issue:
 Agencies Make Tradeoffs Between

•
 

Minimizing disclosure risk
–

 
Mandated by law: protect data subjects’ privacy

–
 

To maintain quality
•

 
Maximizing data utility 
–

 
Policy

–
 

Research, especially statistical inference



SDL

“Do something to keep data 
warehouses from becoming

 data cemeteries”



Forms of Disclosure

•
 

Identity disclosure
–

 
Record is associated with a particular subject

•
 

Attribute disclosure
–

 
Value of sensitive attribute is disclosed, with or 
without identity disclosure

•
 

Inferential disclosure
–

 
Identity or attribute disclosure on a statistical basis

•
 

False positive
–

 
Intruder acts on basis of incorrect information



Identity Disclosure

•
 

Possible via
–

 
Explicit identifier: name and address, SSN, …

–
 

Implicit identifier: “Occupation = Mayor of New 
York”

–
 

Extreme data values: Income = $109

–
 

Rare attribute combinations: State = ND, Ethnicity 
= Korean, Age = 50, Gender = F, NumberChildren

 = 8, Occupation = Statistician
–

 
“Recognition”

–
 

Linkage to external database



Record Linkage

•
 

Locate external database containing
–

 
Attributes also in the released database

–
 

Identifiers
•

 
Match records using common attributes



Attribute Disclosure

•
 

Example: small count cells in categorical data
•

 
Suppose
–

 
Data contain average income by (Age,Race,ZIP) 

–
 

Only two people with
•

 
Age = 56-60

•
 

Race = white
•

 
ZIP = 27709

–
 

I am one of those two
•

 
Then I know the income of the other one



Inferential Disclosure

•
 

Example: income can be predicted reliably 
from other attributes

•
 

Involves uncertainty
•

 
Can be “incidental”
–

 
In a regression of income on age, some values lie 
“on” the regression line



How Easy is It?

•
 

Most people can be identified by
–

 
Date of birth (MM/DD/YYYY)

–
 

Gender
–

 
5-digit ZIP code

•
 

Finding these items on the web is very easy
–

 
Voter records

–
 

Property tax records
–

 
ChoicePoint



Finding ZIP Code and Gender



Finding Date of Birth



And More …



Approaches to SDL

•
 

Restricted access
•

 
Restricted data
–

 
The truth but not the whole truth

•
 

Altered data
–

 
Nearly the truth

•
 

Analysis servers (DASs)



Restricted Access
•

 
Access at restricted data center [, at a cost]
–

 
To approved individuals

–
 

For approved analyses (before and after)
•

 
Advantages
–

 
Real data

•
 

Disadvantages
–

 
Inequitable

–
 

Manual approval processes
•

 
Costly

•
 

May ignore important issues such as query interaction



Restricted and Altered Data

•
 

O
 

= original database
•

 
Restricted data release: 
–

 
Often, 

–
 

Examples: drop attribute, coarsen attribute
•

 
Altered data release:
–

 
Often, not record-by-record

–
 

Examples: Microaggregation, data swapping 



A Categorization

•
 

Dimension 1: degree of “borrowing”
–

 
None: Mi

 

depends only on Oi

–
 

Some: Mi

 

depends on Oi

 

and small number of other 
Oj

–
 

A lot: Mi

 

depends on “all”
 

Oj

•
 

Dimension 2: exogeneous
 

randomness or not
–

 
Affects data values

–
 

Inherent in algorithm



Examples of Altered Data

•
 

Aggregation
–

 
Geographical

–
 

Coarsening of categories, especially top-coding
•

 
Perturbation
–

 
Additive (or other) noise 

–
 

Microaggregation
–

 
Data swapping

•
 

Synthetic data



Risk-Utility Formulations



Generalities

•
 

Components
–

 
Database O

–
 

Set R
 

of candidate releases (masked databases) M
–

 
Disclosure risk function DR(M)

–
 

Data utility function DU(M)
•

 
Goal: Select the “best release”
–

 
Problem: More utility = more risk



Selection Procedure 1

•
 

Maximize utility subject to upper bound on 
risk



Selection Procedure 2

•
 

Select from risk-utility frontier
 

defined by the partial 
order

•
 

Can use
–

 
Utility function

–
 

Other means of choice



Conceptual Risk-Utility Frontier



Risk Measures

•
 

An underlying concept
–

 
Relative uniqueness  = risk

•
 

Tabular data
–

 
Counts and sums: number of cases in small (e.g., 1 
or 2) count cells

–
 

Sums: dominance (e.g., 60%) 
•

 
Microdata
–

 
Record linkage: % of records linked correctly to 
parent



Categorical Data:
 Broad  Utility Measures

•
 

Distance between actual tables (Gomatam, et 
al., JOS, 2005)
–

 
Hellinger: 

–
 

Total variation
–

 
Entropy change

•
 

Indistinguishability
 

of M from O (Woo, et al. 
JPC, 2006)
–

 
Propensity scores



Categorical Data: Released Marginals

•
 

Dobra, et al. (IJUFKS, 2002)
–

 
Number of released marginals

–
 

Number of released cells
–

 
Number of degrees of freedom

–
 

Distance between O and Ô estimated via IPF



Categorical Data: Model-Based

•
 

Likelihoods (Gomatam, et al., JOS 2005)

–

•
 

Δ(log-linear model) (Denogean, Karr, Qaqish)
•

 
Distance between fitted tables (Denogean, et al., 2006)
–

 
Model for O Estimated table Ô

–
 

Model for M Estimated table M^
–

 
Measure distance between Ô and M^



Numerical Data: Broad Measures

•
 

Distance measures
–

 
Kullback-Liebler

 
(Karr, et al., TAS, 2006)

•
 

Only feasible (approximately) for normal data
–

 
Distribution functions (Woo, et al., 2006)

•
 

Don’t seem to work very well

•
 

Indistinguishability
 

(Woo, et al., 2006)
–

 
Propensity scores

–
 

Clustering
–

 
[SVM]

–
 

Other classifiers?



Numerical Data:
 Regression-Specific Measures

•
 

Gomatam, et al., Stat. Sci., 2005
–

 
Setting: regression servers—protect covariance 
entries involving X0

 

and Xsupp

–
 

Dimension of unsuppressed attributes Xfree

–
 

R2(X0

 

|Xfree

 

) [+ Σi

 

є

 

free

 

wi

 

]
•

 
Karr, et al., TAS, 2006
–

 
Setting: X0

 

|X-{0}

–
 

Confidence interval overlap
–

 
Confidence ellipsoid overlap



Example: Geographical Aggregation

•
 

High-resolution geography is a major threat to 
confidentiality:
–

 
ZIP code

–
 

County
–

 
In some cases, even state

•
 

Possible solutions
–

 
Report data at regional level (US = 4 regions)

–
 

Report data at state level
–

 
Let the data determine the level of aggregation



Data-Dependent
 Geographical Aggregation

•
 

Annual chemical use survey by National 
Agricultural Statistics Service (NASS)
–

 
194,410 records from 30,500 farms

–
 

322 active ingredients
–

 
67 crops (field crops, fruits and vegetables)

•
 

Basic reports: application rates (lbs/acre)
•

 
Reporting goal: county level

•
 

Reporting practice: state level



Risk-Utility Formulation

•
 

Release (1 chemical, 1 crop): set M of 
geographical units, and application rate for 
each

•
 

Disclosure risk: (N=3, p=.6)
 

rule. Risk is
–

 
Infinite if there is a geographical unit
•

 
Containing fewer than 3 surveyed farms (0 not fewer 
than 3)

•
 

In which one farm contains more than 60% of total 
acreage

–
 

Zero otherwise



Risk-Utility Formulation

•
 

Data utility: amount of aggregation (less is 
better)

•
 

Method: aggregate geographically adjacent 
counties into disclosable “supercounties”
–

 
“Small” heuristic: minimize size of supercounties

–
 

“Pure” heuristic: preserve disclosable counties



The Aggregation



Why is Risk-Utility Hard?

•
 

“One person’s risk is another’s utility” 
–

 
One difference: incorrect information carries 
negative utility but positive risk

•
 

Role of external knowledge
–

 
Risk: disclosure by means of record linkage to 
external databases

–
 

Utility: improved analyses by integration with 
external databases

•
 

Role of data quality



Data Swapping



Data Swapping

•
 

Applied at microdata level
•

 
Basic idea: switch subset of attributes between 
pairs of records
–

 
Records, attributes or both can be randomized

•
 

Disclosure risk perspective
–

 
Reduces risk: intruder cannot be certain that any 
record is real

•
 

Data utility perspective
–

 
Distorts data, and so reduces utility



Tabular View



CPS-8: Excerpt from 1993 CPS

•
 

48,842 data records (not realistic!) 
•

 
8 categorical attributes (not realistic!)

•
 

2880 cells in full 8-dimensional table (not realistic!)
•

 
1695 cells with non-zero counts (not realistic!)



Example Swap for CPS-8



Implementation

•
 

Required parameters
–

 
Swap rate

–
 

Swap attribute(s)
•

 
Deterministic (which ones?) or random (probabilities)

–
 

Record selection randomization probabilities
•

 
Options
–

 
Constraints on unswapped attributes

–
 

For numerical data, rank constraints
–

 
Special treatment for sampling weights

•
 

Domain knowledge checks



Distortion Effects

•
 

For “traditional” (fixed attribute) swapping
–

 
No change to

•
 

Joint distribution of swap attributes
•

 
Joint distribution of unswapped

 
attributes

–
 

Change to joint distributions that involve both 
swap and unswapped

 
attributes

•
 

For doubly random swapping
–

 
All joint distributions change



Risk-Utility Formulation

•
 

Disclosure risk measure

•
 

Utility measure



Data Swapping Experiments 

•
 

Done on CPS-8
–

 
Two rates: 1%, 2%

–
 

All 8 single-attribute swaps
–

 
All 28 two-attribute swaps

–
 

No constraints
•

 
Performed using NISS Data Swapping Toolkit
–

 
Available at www.niss.org/software/dstk.html



Results



Perturbation Methods for 
Numerical Microdata



Rationale

•
 

Perturbation can
–

 
Preserve (robust) statistically interesting low-

 dimensional relationships in the data
–

 
Distort (fragile) confidentiality-threatening high-

 dimensional relationships 



Example: Additive Noise

•
 

Two attributes
–

 
Age = 20, ..., 70

–
 

Income
•

 
Assume that age predicts income perfectly
–

 
Income = $40,000 + $2,500*(Age –

 
20)

•
 

Add noise to income
–

 
Uniform on (-5000, 5000)

•
 

Preserves low-dimensional trend
•

 
Destroys high-dimensional exact relationship



Data with No Noise



Noise Added to Income



Microaggregation

•
 

Cluster data into sets of size K (K=3 is typical)
•

 
Replace all elements of each cluster by their 
(attribute-wise) mean

•
 

Choices
–

 
Clustering algorithm

–
 

Cluster size



Pictorial Representation



Tabular Data: Background



“Catalog” of Approaches

•
 

Cell suppression
•

 
Release selected marginal sub-tables

•
 

Matrix methods



Example of Cell Suppression

Age

 Race  
0-20 21-40 40+ Total

White 50 2 25 77

African-

 American
1 34 15 50

Other 100 101 102 303

Total 151 137 142 430

Original Table (problem cells in red)



Step 1: Suppress Problem Cells

Age

 Race  
0-20 21-40 40+ Total

White 50 *** 25 77

African-

 American
*** 34 15 50

Other 100 101 102 303

Total 151 137 142 430

***

 

= Primary suppressions



Step 2: Complementary Suppression

Age

 Race  
0-20 21-40 40+ Total

White ### *** 25 77

African-

 American
*** ### 15 50

Other 100 101 102 303

Total 151 137 142 430

###

 

= Complementary suppressions



Complementary Suppression 
Done Dumbly

Age

 Race  
0-20 21-40 40+ Total

White ### *** ### 77

African-

 American
*** 34 15 50

Other ### 101 ### 303

Total 151 137 142 430

###

 

= Complementary suppressions



What About Marginals
 

Only?

Age

 Race  
0-20 21-40 40+ Total

White 77

African-

 American
50

Other 303

Total 151 137 142 430



Servers



Servers
•

 
Concept: web-based system to which users 
submit queries for analyses of O

•
 

Server must
–

 
Assess risk, taking into account interactions with 
previously answered queries

–
 

Assess utility inherent in the query
–

 
Account for queries that become unanswerable

–
 

Decide whether (and how) to respond, keeping in 
mind that a denial may be informative



Fundamentally Different 
Server Types

•
 

Static: only pre-determined set of queries will 
be answered

•
 

Dynamic: queries arrive over time, and must 
be assessed in light of
–

 
Previously answered queries

–
 

Queries that would become unanswerable
–

 
User equity



Server Abstractions
•

 
Database O

•
 

Query space Q
–

 
Queries Q = f(O)

 
to which the server will respond

•
 

Answer space A
–

 
If a query Q

 
is not denied, what answer A(Q)

 
is given?

•
 

Released set R
 

(R(t)
 

for dynamic servers)
–

 
Information contained in all answered queries

•
 

Disclosure risk function DR
–

 
Needs to be defined for all subsets

 
of Q!

•
 

Data utility function DU
–

 
Needs to be defined for all subsets

 
of Q!



Example: Table Servers

•
 

O
 

= large (d = 50 dimensions) contingency table
•

 
Q

 
= all marginal sub-tables of O

•
 

Possible responses to Q
–

 
A(Q) = refusal to release Q

–
 

A(Q) = Q, which also releases all sub-tables of Q
•

 
Scalability is a major issue
–

 
If the table has d

 
dimensions, then the number of 

candidate releases is ~ 22d



Example of a Static Table Server
•

 
Release R = subset of Q

•
 

Disclosure risk

•
 

Data utility

•
 

Maximize DU subject to constraint on DR
–

 
Not solvable because of computational issues: number of 
releases, calculation of bounds



Example: CPS Data
•

 
299,285 records 

•
 

13 dimensions
–

 
2,592,000 cells

–
 

41,672 non-zero cells
–

 
22,996 cells with #(C) = 1

–
 

6,345 cells with #(C) = 2
–

 
3,032 cells with #(C) = 3

•
 

“Optimal” release with width 3 for bounds
–

 
Frontier = 2 7-way tables and 5 6-way tables

–
 

Total of 351 sub-tables
•

 
By comparison, release of all 3-way sub-tables 
contains 377 sub-tables



How Might a 
Dynamic Table Server Function?

•
 

Queries arrive over time
•

 
Answered query Q

 
represents both

–
 

Direct release: Q
–

 
Possible indirect releases: unreleased children of Q

•
 

Totality R(t)
 

of released information at
 

t
 

described by 
released frontier

•
 

Assume that all users collude
•

 
Need
–

 
Disclosure risk measure

–
 

Data utility measure
–

 
Release rule



More on Dynamic Table Servers

•
 

Maintain disclosure risk below threshold, so 
refuse to release Q

 
at t

 
if

•
 

Myopic release rule: release Q
 

at t
 

if

•
 

Could bring in utility by requiring



Still More …

•
 

Myopic release rule
–

 
Fails to account for queries that become permanently 
unanswerable as a result of answering Q

•
 

These are specified by an unreleasable
 

frontier

–
 

Cannot prevent small number of users from driving 
the server into a region that meets their needs

–
 

Does not naturally accommodate utility
•

 
We don’t know feasible alternatives!



A Pictorial View



Regression Servers

•
 

O
 

= database of numerical attributes Xi

•
 

Q
 

= “all regressions” within O:

•
 

A(Q) consists of
–

 
Estimated coefficients

–
 

Estimated covariance matrix of coefficients
–

 
R2

–
 

???



Initial Issues

•
 

What about diagnostics?
•

 
Query space Q
–

 
Is not partially ordered

–
 

Does not allow transformations of attributes
•

 
Interaction among queries not clear

•
 

What is disclosure risk?
–

 
Individual data elements

–
 

Relationships within the data
•

 
What is data utility?



What We Do Know: One Special Case

•
 

X0

 

= sensitive variable, X1

 

,…,Xd

 

= predictors
–
–

•
 

Q = all regressions except
 

those with 
–

 
X0

 

as response
–

 
Any element of Xsupp

 

as predictor, and vice versa



Disclosure Risk

•
 

Residual risk DRres
–

 
1 / square root of the average of the squared 
residuals for selected subset (e.g., those with 
extreme attribute values) of the data 

•
 

Prediction risk DRpred
–

 
Draw feasible values of ssupp

 

from the ellipsoid to 
which they are constrained by Xfree

 

, generating 
feasible coefficients for [X0

 

|X1

 

,…,Xd

 

]  
–

 
Risk measure is the average value of R2

 
for these 

feasible regressions 



Data Utility

•
 

Unweighted
 

utility
–

 
DUrsq

 

= R2

 
of [X0

 

|Xfree

 

]
•

 
Weighted utility
–

 
DUrsqwt

 

= Ursq

 

+ Σfree

 

wi

–
 

Way of incorporating domain knowledge
•

 
Problem: risk and utility are hard to differentiate



Research Frontiers



Playbill

•
 

New measures of utility and risk
•

 
Combining SDL methods

•
 

[Transparency]
•

 
Distributed databases



New Utility Measures

•
 

The basic idea
–

 
Merge original data O and masked data M, each 
labeled

–
 

Attempt to classify them without using the labels
–

 
If not successful, then M

 
is a good surrogate for O

•
 

Classification methods
–

 
K-means: So-so

–
 

Distribution functions: not very good
•

 
Propensity scores: really good
–

 
Scalability issue: involves model



Axioms for Data Utility

•
 

Basis: Consumer preference theory in microeconomics
•

 
DU = data utility measure
–

 
DU(M) = utility of masked data M

•
 

Anchoring
–

 
DU(Ø) = 0

•
 

Satiation
–

 
DU(O) ≥

 
DU(M) for all

 
M

•
 

Usefulness of O
–

 
Easy: DU(O) > 0

–
 

Admissibility: M such that  DU(M) ≥
 

DU(Ø)



More Candidate Axioms

•
 

Monotonicity
–

 
In n(M): if M’

 
contains a subset of the rows of M

 but the same columns, then DU(M) ≥
 

DU(M’) 
–

 
In k(M): if M’

 
contains a subset of the columns of M

 but the same rows, then DU(M) ≥
 

DU(M’)
–

 
In parameters p(SDL

 
method)

 
with the “form”

 
of 

the method fixed
•

 
Convexity, as a stronger form of monotonicity



What are the Real Questions?

•
 

Broad (= blunt) vs. specific (= narrow)
•

 
Is there anything meaningful in-between?

•
 

Scalability
–

 
Dimension

–
 

Data set size
•

 
How does domain knowledge enter?
–

 
Example: Variable transformations



More Questions

•
 

Utility implications of transparency
–

 
Altered analyses 

–
 

Proper accounting for SDL-induced uncertainty
•

 
What principles should be used to choose 
utility measures?
–

 
Is utility one-dimensional?

•
 

Entirely new approaches to utility?
–

 
Example: tied to decisions based on data, not data 
per se



Distribution Function
 Measures of Risk

•
 

The idea: risk of a masked data set M is 
measured by a distribution function FM

 

(t)
•

 
Can compare candidate releases using 
stochastic ordering

•
 

Can define frontier



Example 1



Example 2



Example 3



Combining Methods

•
 

First, apply a method 
–

 
That is good for risk

–
 

Whose utility consequences can be characterized
•

 
Second, apply a method that
–

 
Undoes what the first method did to utility

–
 

Does not undo what the first method did for risk



Example

•
 

Original data O
•

 
Stage 1: microaggregation

 
to produce M1

–
 

Good for risk
–

 
Reduces covariance

•
 

Stage 2: additive noise to restore lost 
covariance, which can be done “intelligently” 
–

 
Example:

 
M2

 

= M1

 

+ N, where 
Cov(N)

 
= Cov(O-M1

 

)





Simulation Study
•

 
8-variable numerical databases, with varying 
correlation structures

•
 

Utility: propensity score
•

 
Risk: record linkage

•
 

Masking method
–

 
Stage 1: microaggregation

 
with z-scores projection

–
 

Stage 2: multiple methods
•

 

Microaggregation

 

with z-scores projection
•

 

Microaggregation

 

with principal components projection
•

 

Multivariate microaggregation
•

 

Rank swapping
•

 

Noise



Propensity Score Utility



Disclosure Risk



More General Approach



Very General Approach



Distributed Data: Problem Formulation

•
 

Multiple, distributed [, related] databases held by 
different “owners”
–

 
Government agencies (example: US states)

–
 

Corporations (example: pharmaceutical companies)
•

 
Goals 
–

 
Valid statistical inference

 
on the “integrated” database 

without actually creating it
–

 
Protect each owner’s data from the other owners

–
 

[Protect data subjects] 
•

 
Constraints
–

 
No trusted third party (human or machine)

–
 

Semi-honest owners



Data Partitioning Models

Horizontal Vertical



Semi-Honesty

•
 

Database owners 
–

 
Must

 
use correct data

–
 

Must
 

perform agreed-on computations properly
–

 
May

 
retain results of intermediate computations



Secure Summation
•

 
Problem
–

 
Agency k

 
has vk

–
 

Agencies want to compute Σ vk

 

in such a way that 
All agency

 
j

 
learns about other agencies’ values is 

what can be deduced from vj

 

and the global sum
•

 
Solution
–

 
Agency 1: generate enormous random number R, 
and transmit R + v1

 

to agency 2
–

 
Agency 2: Add v2

 

, transmit R + v1

 

+ v2

 

to agency 3
–

 
...

–
 

Agency 1: receive R + Σ vk

 

, subtract R, share result



Simple Application: Secure Average

•
 

Each agency has income data, and they want to 
calculate the global average income
–

 
nj

 

= number of subjects for agency j
–

 
Ij

 

= total income for agency j
•

 
Use secure summation to compute and share
–

 
I = I1

 

+ … + IK

–
 

n = n1

 

+ … + nK

•
 

Each agency then computes I/n



Weaknesses of Secure Summation

•
 

Needs “good” random number
•

 
Collusion is possible
–

 
Agencies n-1

 
and n+1

 
can share information and 

determine an without revealing an-1

 

or an+1
–

 
Can be defeated by

•
 

Splitting calculation into pieces, with different orders 
for each

•
 

Hiding order from agencies, as in NISS SCS

•
 

Breaks if semi-honesty fails
–

 
More later



Regression for 
Horizontally Partitioned Data

•
 

Setting: Agencies hold same numerical attributes on 
disjoint sets of subjects
–

 
y

 
= response

–
 

X
 

= predictors 

•
 

Goal: Fit the linear regression
 including diagnostics

•
 

Constraints
–

 
As above



Solution via Secure Summation

•
 

Compute 

entrywise
 

by secure summation
•

 
Share these among agencies; each calculates 

∑
=

=
K

j

jTjT yXyX
1

)(∑
=

=
K

j

jTjT XXXX
1

)(



Example: Chemical Data from Multiple 
Pharmaceutical Manufacturers

•
 

Data
–

 
1318 molecules

–
 

Response: water solubility
–

 
Predictors

•

 

1 constant
•

 

90 (binary) molecular descriptors

•
 

4 “synthesized” companies
–

 
Data split using classifier, so each company’s data are 
relatively homogeneous, but with gaps!

–
 

Numbers of molecules = 499, 572, 16 (!), 231



Results



Results—2 



NISS Secure Computation System



SCS: Regression Output
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