SAVE-2

Simulator Analysis and Validation Engine

Jesús Palomo
March 2, 2005

Motivation example

Experiment: Consider a vehicle being driven over a road with two major potholes.
Data:

- Field: Time-history curves of the resulting forces in the tested vehicle,
- Computer model: Time curves obtained when running the model at different design points.

Example of input parameters

Parameter	Type (label)	Uncertainty
Damping 1 (force dissipation)	Calibration $\left(u_{1}\right)$	15%
Damping 2 (force dissipation)	Calibration $\left(u_{2}\right)$	15%
Bushing Stiffness (Voided)	Unmeasured $\left(x_{1}\right)$	15%
Bushing Stiffness (Non-Voided)	Unmeasured $\left(x_{2}\right)$	10%
Ride Height	Measured	10%
Front rebound travel until Contact	Unmeasured $\left(x_{3}\right)$	5%
Front rebound bumper stiffness	Unmeasured $\left(x_{4}\right)$	8%
Rear Spring Stiffness	Measured	10%
Sprung Mass	Unmeasured $\left(x_{5}\right)$	5%
Unsprung Mass	Unmeasured $\left(x_{6}\right)$	12%
Body Pitch Inertia	Unmeasured $\left(x_{7}\right)$	12%

Questions

- Is a particular computer model correct?, \longrightarrow Wrong question
- We ask: Does it provide predictions that are accurate enough for the intended use(s), including both bias and uncertainty?.
- $P(\mid$ prediction - truth $\mid<\delta)>\alpha$?
$\delta=$ tolerable difference
$\alpha=$ assurance/confidence,
- Can the field experiment be reduced/extrapolated?

SAVE-2 provides answers

Steps of the analysis

- Inputs,
- Data registration and Wavelet Decomposition,
- Response Surface Approximation,
- Bayesian Analysis
- Outputs and plots.

SAVE-2

Data Registration

Field and model-run curves should occur at the same "locations".
Steps

1. Convert time-histories to distance-histories,
2. Compute the average of model runs as reference curve,
3. Align curves to match the peaks of both major potholes.
4. Wavelet representation of the curves

Representation of the data in the analysis

The m computer model and f field response curves are represented as

$$
\begin{aligned}
y^{M}\left(\boldsymbol{z}_{j} ; d\right) & =\sum_{i=1}^{\mathcal{W}} w_{i}^{M}\left(\boldsymbol{z}_{j}\right) \psi_{i}(d), & j=1, \ldots, m \\
y_{r}^{F}\left(\boldsymbol{x}^{*} ; d\right) & =\sum_{i=1}^{\mathcal{W}} w_{i r}^{F}\left(\boldsymbol{x}^{*}\right) \psi_{i}(d), & r=1, \ldots, f
\end{aligned}
$$

where $w_{i}^{M}\left(\boldsymbol{z}_{j}\right)$ and $w_{i r}^{F}\left(\boldsymbol{x}^{*}\right)$ are the wavelet coefficients and

$$
\begin{aligned}
& \boldsymbol{x}=\left(x_{1}, \ldots, x_{7}\right) \text { key vehicle characteristics } \\
& \boldsymbol{u}=\left(u_{1}, u_{2}\right) \text { unknown computer model calibration parameters } \\
& \boldsymbol{z}=(\boldsymbol{x}, \boldsymbol{u})
\end{aligned}
$$

Bayesian analysis

We use a Bayesian Gaussian Spatial Process approximation to each of the model wavelet coefficient function $w_{i}^{M}(\boldsymbol{z})$. Its posterior, given GASP parameters and model-run data, at a new input \boldsymbol{z} is

$$
N\left(w_{i}^{M}(\boldsymbol{z}) \mid \widehat{\mu}_{i}(\boldsymbol{z}), \widehat{V}_{i}(\boldsymbol{z})\right)
$$

For the $i^{t h}$ wavelet coefficient

$$
\begin{aligned}
w_{i}^{R}\left(\boldsymbol{x}^{*}\right) & =w_{i}^{M}\left(\boldsymbol{x}^{*}, u^{*}\right)+b_{i}\left(\boldsymbol{x}^{*}\right) \\
w_{i r}^{F}\left(\boldsymbol{x}^{*}\right) & =w_{i}^{R}\left(\boldsymbol{x}^{*}\right)+\varepsilon_{i r} \quad r=1, \ldots, f .
\end{aligned}
$$

where $\left(\boldsymbol{x}^{*}, \boldsymbol{u}^{*}\right)$ are the "true" but unknown parameters.

Posterior distribution

- Given the observed data $D=\left\{\bar{w}_{i}^{F}, S_{i}^{2}, \widehat{\mu}_{i}(\cdot), \widehat{V}(\cdot): i \in \mathcal{W}\right\}$.

$$
\begin{aligned}
& \pi\left(\boldsymbol{w}^{M *}, \boldsymbol{b}, \boldsymbol{z}^{*}, \boldsymbol{\theta} \mid D\right)=\pi\left(\boldsymbol{w}^{M *} \mid \boldsymbol{b}, \boldsymbol{z}^{*}, \boldsymbol{\theta}, D\right) \cdot \pi\left(\boldsymbol{b} \mid \boldsymbol{z}^{*}, \boldsymbol{\theta}, D\right) \cdot \pi\left(\boldsymbol{z}^{*}, \boldsymbol{\theta} \mid D\right) \\
& \boldsymbol{\theta}=\left(\boldsymbol{\sigma}^{2}, \boldsymbol{\tau}^{2}\right) \text { are the variances of the errors. }
\end{aligned}
$$

- The outputs of the MCMC are

$$
\left\{\left(\boldsymbol{w}^{M *}\right)^{h},(\boldsymbol{b})^{h},\left(\boldsymbol{x}^{*}\right)^{h},\left(\boldsymbol{u}^{*}\right)^{h},(\boldsymbol{\theta})^{h}\right\}_{h=1}^{N}
$$

- From these we reconstruct the bias curves

$$
b^{(h)}(d)=\sum_{i=1}^{\mathcal{W}} b_{i}^{(h)} \psi_{i}(d)
$$

- The posterior sample of bias-corrected predictions of reality is

$$
\left(y^{R}\right)^{(h)}(d)=\sum_{i=1}^{\mathcal{W}}\left(\left(w_{i}^{M *}\right)^{(h)}+b_{i}^{(h)}\right) \psi_{i}(d), \quad h=1, \ldots, N .
$$

- The posterior sample of individual (field) bias-corrected prediction curves is

$$
\left(y^{F}\right)^{(h)}(d)=\sum^{\mathcal{W}}\left(\left(w_{i}^{M *}\right)^{(h)}+b_{i}^{(h)}+\epsilon_{i}^{(h)}\right) \psi_{i}(d), \quad h=1, \ldots, N .
$$

Extrapolations: under different conditions

Example of an input file

\$File: C:/XXX/PX11tk1.ascii
!DATA TYPE: TIME-HISTORY!
!NUMBER OF CHANNELS: 4!
!SAMPLE RATE: 409.6!
!TOTAL NUMBER OF POINTS/CHANNELS: 40960!
\$CHANNEL DESCRIPTION FULL SCALE UNITS POLARITY

1 RFST 41654.980

2 RRTL 51384.940

3 RFDL 33160.090

4 VEHS 130.000 mp
\$ Time CH 1 CH 2 CH 3 CH 4
!BEGIN DATA:!
$.00000010 .175-1.56915 .187 .004$

System Requirements

- The R statistical software package (version 1.8.1 or higher): available under GNU-GPL terms..
- The wavethresh package (version 2.2-8 or higher) for R : available under GNU-GPL terms.
- The ATLAS (Automatically Tuned Linear Algebra Software) library: available under GNU-GPL terms.
- The GNU Scientific Library: available under GNU-GPL terms.

THANKS!

