

Simulator Analysis and Validation Engine

Jesús Palomo March 2, 2005 **Experiment**: Consider a vehicle being driven over a road with two major potholes.

Data:

- Field: Time-history curves of the resulting forces in the tested vehicle,
- Computer model: Time curves obtained when running the model at different **design points**.

Model Runs:Ch45:Pothole 1

Model Runs:Ch45:Pothole 2

Example of input parameters

Parameter	Type (label)	Uncertainty
Damping 1 (force dissipation)	Calibration (u_1)	15%
Damping 2 (force dissipation)	Calibration (u_2)	15%
Bushing Stiffness (Voided)	Unmeasured (x_1)	15%
Bushing Stiffness (Non-Voided)	Unmeasured (x_2)	10%
Ride Height	Measured	10%
Front rebound travel until Contact	Unmeasured (x_3)	5%
Front rebound bumper stiffness	Unmeasured (x_4)	8%
Rear Spring Stiffness	Measured	10%
Sprung Mass	Unmeasured (x_5)	5%
Unsprung Mass	Unmeasured (x_6)	12%
Body Pitch Inertia	Unmeasured (x_7)	12%

- Is a particular computer model correct?, \longrightarrow Wrong question
- We ask: Does it provide predictions that are accurate enough for the intended use(s), including both bias and uncertainty?.
- $P(|\text{prediction truth}| < \delta) > \alpha$?
 - δ = tolerable difference
 - $\alpha = assurance/confidence,$
- Can the field experiment be reduced/extrapolated?

SAVE-2 provides answers

- Inputs,
- Data registration and Wavelet Decomposition,
- Response Surface Approximation,
- Bayesian Analysis
- Outputs and plots.

Field and model-run curves should occur at the same "locations". Steps

- 1. Convert time-histories to distance-histories,
- 2. Compute the average of model runs as *reference curve*,
- 3. Align curves to match the peaks of both major potholes.
- 4. Wavelet representation of the curves

Representation of the data in the analysis

The m computer model and f field response curves are represented as

$$y^{M}(\boldsymbol{z}_{j};d) = \sum_{i=1}^{\mathcal{W}} w^{M}_{i}(\boldsymbol{z}_{j})\psi_{i}(d), \qquad j = 1,\dots,m$$
$$y^{F}_{r}(\boldsymbol{x}^{*};d) = \sum_{i=1}^{\mathcal{W}} w^{F}_{ir}(\boldsymbol{x}^{*})\psi_{i}(d), \qquad r = 1,\dots,f.$$

where $w_i^M(\boldsymbol{z}_j)$ and $w_{ir}^F(\boldsymbol{x}^*)$ are the wavelet coefficients and

 $m{x} = (x_1, \dots, x_7)$ key vehicle characteristics $m{u} = (u_1, u_2)$ unknown computer model calibration parameters $m{z} = (m{x}, m{u})$ We use a Bayesian Gaussian Spatial Process approximation to each of the model wavelet coefficient function $w_i^M(z)$. Its posterior, given GASP parameters and model-run data, at a new input z is

$$N\left(w_{i}^{M}(oldsymbol{z})|\widehat{\mu}_{i}(oldsymbol{z}),\widehat{V}_{i}(oldsymbol{z})
ight)$$

For the i^{th} wavelet coefficient

$$w_i^R(\boldsymbol{x}^*) = w_i^M(\boldsymbol{x}^*, u^*) + b_i(\boldsymbol{x}^*)$$
$$w_{ir}^F(\boldsymbol{x}^*) = w_i^R(\boldsymbol{x}^*) + \varepsilon_{ir} \qquad r = 1, \dots, f.$$

where (x^*, u^*) are the "true" but unknown parameters.

• Given the observed data $D = \{ \overline{w}_i^F, S_i^2, \widehat{\mu}_i(\cdot), \widehat{V}(\cdot) : i \in \mathcal{W} \}.$

 $\pi(\boldsymbol{w}^{M*}, \boldsymbol{b}, \boldsymbol{z}^*, \boldsymbol{\theta} \mid D) = \pi(\boldsymbol{w}^{M*} \mid \boldsymbol{b}, \boldsymbol{z}^*, \boldsymbol{\theta}, D) \cdot \pi(\boldsymbol{b} \mid \boldsymbol{z}^*, \boldsymbol{\theta}, D) \cdot \pi(\boldsymbol{z}^*, \boldsymbol{\theta} \mid D)$

 $\boldsymbol{\theta} = (\boldsymbol{\sigma}^2, \boldsymbol{\tau}^2)$ are the variances of the errors.

• The outputs of the MCMC are

$$\left\{(m{w}^{M*})^h,(m{b})^h,(m{x}^*)^h,(m{u}^*)^h,(m{ heta})^h
ight\}_{h=1}^N$$

• From these we reconstruct the bias curves

$$b^{(h)}(d) = \sum_{i=1}^{\mathcal{W}} b_i^{(h)} \psi_i(d)$$

• The posterior sample of *bias-corrected predictions* of reality is

$$(y^R)^{(h)}(d) = \sum_{i=1}^{\mathcal{W}} \left((w_i^{M*})^{(h)} + b_i^{(h)} \right) \psi_i(d), \ h = 1, \dots, N.$$

• The posterior sample of *individual (field) bias-corrected* prediction curves is

$$(y^F)^{(h)}(d) = \sum_{i=1}^{W} \left((w_i^{M*})^{(h)} + b_i^{(h)} + \epsilon_i^{(h)} \right) \psi_i(d), \ h = 1, \dots, N.$$

Extrapolations: under different conditions

Example of an input file

\$File: C:/XXX/PX11tk1.ascii

!DATA TYPE: TIME-HISTORY!

!NUMBER OF CHANNELS: 4!

!SAMPLE RATE: 409.6!

!TOTAL NUMBER OF POINTS/CHANNELS: 40960!

\$CHANNEL DESCRIPTION FULL SCALE UNITS POLARITY

1 RFST 41654.980

2 RRTL 51384.940

3 RFDL 33160.090

4 VEHS 130.000 mp

\$ Time CH 1 CH 2 CH 3 CH 4

!BEGIN DATA:!

 $.000000\ 10.175\ \text{-}1.569\ 15.187\ .004$

- The R statistical software package (version 1.8.1 or higher): available under GNU-GPL terms..
- The wavethresh package (version 2.2-8 or higher) for R: available under GNU-GPL terms.
- The ATLAS (Automatically Tuned Linear Algebra Software) library: available under GNU-GPL terms.
- The GNU Scientific Library: available under GNU-GPL terms.

THANKS!