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Nonparametric regression provides fits to data
with minimal assumptions, and is used when a
parametric version of the regression function is
not known.

Popular methods require a choice of user-defined
parameters in the fit:

e Kernel smoother: bandwidth
e Smoothing spline: smoothing parameter

e Regression splines: number and placement of
knots

If the fits are sensitive to the user-defined pa-
rameters, it’s hard to make practical inference
about the underlying regression function.



Examples of natural cubic smoothing splines
with different smoothing parameters.
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Observational data regarding blood plasma mi-
cronutrients. The response is the logarithm of
the level of beta carotene the subject’s blood
plasma (high levels are believed to be protec-
tive against cancer). The predictor is the body
mass index.



Fits using only shape restrictions such as mono-
tonicity or convexity do not require user-defined
parameters, but are not smooth, and the fits are
not parsimonious, in that the model degrees ot
freedom is in some sense large.

monotone decreasing convex decreasing
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Some hypothesis tests:

Hy : function is constant

H{ : function is increasing

Hy : function is linear

H1 : function is convex
CAN'T do:

Hy : tunction is linear

H1 : function is increasing



Smoothing and Shape Assumptions

When shape assumptions can be combined with
smoothing, we get the best of both worlds:

The fits are nice-looking.

Although we still use user-defined parameters,
the fit is more robust to choices.

We can do some types of inference about the
regression function.



The I-splines from Ramsay (1988) are constrained
to be monotone.

These are integrals of positive M-splines, and
SO are Increasing.

The M-splines are given recursively for subse-
quently higher order. Order-1 splines are the
piecewise constant (step functions):

1 , .
m for t’l, S X S tl—l—l

MWD (2) =
() 0  otherwise

Order-k M-splines are computed from the lower
orders, recursively:

(F=1)(tirr—ti)

M=t ME D @)+ =) MED @) o o oy
M;k) ) — or tj; >~ & > li+k
(z) { 0 otherwise



The [-splines are

0 for = < t;
Iz-(k) () = Ii; Mz-(k)(u)du for t; <x <t
fttii+k Ml(k) (U)du +x — ti+k for x > ti+k

The I-splines are integrals of positive functions
so they are increasing. The first order [-splines
are piecewise linear and continuous; the second
order I-splines are piecewise quadratic with con-
tinuous first derivative, etc.

piecewise quadratic I-splines
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The I-splines can easily be adapted to mono-
tone decreasing constraints.

We can get convex C-splines by integrating the
increasing I-splines. Concave C-splines can be
obtained by integrating the decreasing [-splines.

It is easy to get increasing concave, decreasing
convex, etc.

Convex C-splines are shown below:
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Piecewise quadratic regression splines: mono-
tone decreasing and convex decreasing fits to
the beta carotene data:
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Algorithm for regression spline fitting

Ramsay provides a iterative gradient-based al-
oorithm for finding the solution. This converges
to the solution in “infinitely many” steps, mean-
ing that there is a stopping criterion defining
“close enough.”

The algorithm proposed here is a simple cone-
projection. The algorithm obtains the exact so-
lution in a few iterations, and each iteration has
little computation.

The ideas behind the algorithm motivate infer-
ence methods.

We'll quickly review important ideas in shape-
restricted regression.
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Shape-Restricted Regression

The model is
Y; :f<5132')—|—0'€i, 1 = 1,...,n,

where ¢; are 12d standard normal random vari-
ables and f is unknown except for its “shape,”
such as increasing, convex, etc.

Vector form: y = @ + o€, where 0, = f(x;).

Then the shape restrictions are a set of linear
inequality constraints such as

0h <0y <--- <0y
The convex constraints are:
- - — 0,
p—0h _O3—02 _  _ On—0n

r9o—T1 T3 — T2 Tn — Tp—1
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The shape restrictions can be written in the
form A@ > 0.

The constraint matrix A is m X n where m =
n — 1 for monotone and m = n — 2 for convex
constraints.

The problem is to find @ to minimize || y—6 ||?
over constraints A6 > 0.

The m inequality constraints form a convex poly-

hedral cone C in IR".

The smallest linear space that contains the cone

is IR™.
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There may be a linear space inside the con-
straint set; call this V' and its dimension is 7.

For monotone constraints, V' is all multiples of
the one-vector. For convex constraints, V =

L(1,x).
et Q=CNVL

The set € is a convex polyhedral cone contained
in an n — r = m dimensional subspace of IR".
[t has m “edges” that are uniquely defined (up
to a scalar multiple).

The least-squares estimator of @ is the projec-
tion of y onto C', or equivalently the sum of the
projections of y onto V' and €.
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The “edges” of the cone, called 8, ..., 8™, are
also the generators of the cone; these can be

found using A and the basis vectors for V.

Any vector in {) can be written as a sum of the
edge vectors with non-negative coeflicients; any
vector in C' can be written as

r . m .
0= % Cj’U] + > bjéj,
1=1 1=1

where bj > ().

Any subset of the edges indexed by J C {1,...,m}
forms a face of the cone F;. The projection
lands on one of the faces.
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Proposition: If J is known, then the least-
squares estimator 0 is the projection of y onto
the linear space spanned by the set of edges in-
dexed by J, plus the v/.

Therefore, the algorithm for projection involves
finding J. Although the algorithm is iterative,

it 1s finite because the number of faces is finite
(2"M).

Sectors

Any subset of the edges indexed by J C {1,...,m}
forms a sector ()7, another polyhedral cone in

v+,
All vectors in the sector project onto F .

[t can be shown that these 2" sectors partition

VL.

Sectors C'y are similarly defined and partition

R"™
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Inference

If @ € V, then the conditional distribution of
SSE/o? given y € Cjis x*(n — d), where d
is the number of edges or the size of J, plus the
number of dimensions in V.

This can be used to construct test statistics for
Hy:0 €V versus Hy : 8 € C. Examples are
constant versus monotone regression function or
linear versus convex.

The test statistic for the known o2 case

o SSEy)—SSE)
X01 = 52
has a density equal to that of mixture of chi-

squares densities, under H).
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For Hy: 0 € V versus Hy: 0 € C,
X51  SSEy— SSE
X861+ SSE /o2 SSEj

is distributed under Hy as a mixture of beta
densities

By =

d n—d

B |-, )ga
2

P(By, < a) = d”éop

where B(p, q) is a beta random variable with
parameters p and q.

P(D = d),

The mixing distribution parameters P(D = d)
are found numerically.

18



Back to regression splines

These ideas can be used in the regression spline
arena.

The spline basis functions are the edges of the
constraint cone.

There are a comparatively small number of edges,
so that the fit is more parsimonious than the

standard shape-restricted regression estimator,

and it is smooth.

The cone projection algorithm typically converges
in only a few iterations.

19



Comparing shape-restricted regression
splines with the unrestricted version

The true regression function is f(z) = = (dot-
ted lines); n = 30; 4id normal errors.

Piecewise quadratic regression splines are shown
for various numbers of interior knots £, chosen
at equal z-percentiles.

The solid lines show fits constrained to be non-
decreasing and convex, while the dashed lines
are the unconstrained fits.
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Test of constant versus increasing f:

We can use the shape-restricted regression spline
for the alternative fit, and we get again a test
statistic with a mixture of betas distribution.

linear regression function “ramp” regression function
n F-test SRRS B-test MREG B-test | n F-test SRRS B-test MREG B-test
20 0.250 0.225 0.213 20 0.250 0.294 0.286
20 0.500 0.449 0.424 20 0.500 0.655 0.624
20 0.750 0.691 0.661 20 0.750 0.928 0.903
40 0.250 0.224 0.201 40 0.250 0.294 0.281
40 0.500 0.447 0.402 40 0.500 0.642 0.610
40 0.750 0.692 0.640 40 0.750 0.909 0.884
80 0.250 0.223 0.190 80 0.250 0.292 0.276
80 0.500 0.445 0.382 80 0.500 0.633 0.594
80 0.750 0.691 0.643 80 0.750 0.899 0.869

Power comparisons for the test of constant vs. monotone regression
function. For the regression spline, the number of interior knots is the
smallest integer larger than logn, so K =5, 6, and 7 corresponding
to n = 20, 40, and 80. The results for the tests using the ordinary
shape-restricted regression estimators are labeled as MREG.
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Similar power results for piecewise quadratic con-
vex regression splines and the test of linear ver-
sus convex regression function.

quadratic regression function “ramp” regression function
n F-test SRRS B-test CREG B-test | n F-test SRRS B-test CREG B-test
20 0.250 0.227 0.213 20 0.250 0.251 0.229
20 0.500 0.451 0.424 20 0.500 0.521 0.480
20 0.750 0.697 0.662 20 0.750 0.786 0.751
40 0.250 0.224 0.201 40 0.250 0.249 0.219
40 0.500 0.449 0.402 40 0.500 0.518 0.462
40 0.750 0.695 0.639 40  0.750 0.786 0.732
80 0.250 0.222 0.188 80 0.250 0.247 0.209
80 0.500 0.445 0.382 80 0.500 0.516 0.442
80 0.750 0.691 0.618 80 0.750 0.784 0.712
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Concurrence of test results with different knot
choices. The underlying regression function is
linear, and the model variance is chosen so that
the power for the test is approximately 0.50.

n ki ko average power % concurrence

40 3 5 0.25 92.3%
40 3 5 .50 90.8%
80 3 6 0.25 88.9%
s0 4 6 0.50 92.3%
s0 4 7 0.25 92.2%
s0 4 7 0.50 88.1%
s0 5 7 0.25 94.7%
80 5 7 0.50 93.7%
120 5 7 0.25 93.7%
120 5 7 0.50 93.1%
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Example: Global warming dataset

Average global temperatures (Hansen & Lebe-
deff) are plotted against year for 121 years:
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(a) Four piecewise quadratic monotone regres-
sion splines with 6, 8, 10, and 12 knots.

(b) The linear fit.
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The auto-correlation plots of the residuals for
both fits are shown below.

Left: residuals from the monotone regresion spline
with 10 knots.

Right: residuals from the linear fit.
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Fitting an AR(1) model with shape-
restricted regression splines:

The covariance matrix for € is A, where

1 ¢ ¢2 ¢3 gbn—l
Ll e 1 e g e

A:1_¢2 & o 1 qé...¢n—3

¢n—1 ¢n—2 ¢'2 ¢ 1

We can use the Cholesky decomposition A = LL’ to transform the
model to an i:d errors model:

L'y=L"'0+ L 've

becomes

where now €* has identity covariance matrix.

We find @ to minimize | y*— 6" ||* with the constraints A*6* > 0,
where A* = AL.

Inference is done in the transformed model, and the solution 0 to the
original problem is obtained through the reverse transformation.
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For known ¢ we get an exact test for constant
versus increasing trend; if ¢ is unknown, we can
estimate it using standard methods, and do a
Cochran-Orcutt iteration.

Shape-restrictions are especially usetul for time
series trends. If the trend function is misspec-
ified, the residuals are often more strongly cor-
related than the actual errors.

The power for tests of constant versus increas-
ing trend is reduced for more strongly positively
correlated errors.

Minimizing the assumptions about the trend
function will guard against correlations induced
by the incorrect trend function.
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Goodness of fit

Regression Spline Smooth Spl Shape-Restricted
n K o IQ CcQ ICQ  Cross-Valid  Isot Conv  Inc-Cnvx
20 5 0.1 .0511 .0487  .0479 .0508 .0810  .0520 .0501
.015 .0141  .0137 0172 0129  .0143 0137
20 5 0.5 .221 .202 188 219 272 216 .195
0687 .0724  .0685 .0858 0659  .0747 .0699
20 5 1.0 .396 315 .343 .397 471 411 357
137 153 .140 184 142 158 143
40 6 0.1 .0391 .0363 .0358 0372 0671 .0395 0379
.0108 .00993 .00973 0119 .00870 .0102 .00975
40 6 0.5 .169 .149 .140 162 218 .164 148
0483 .0508  .0483 .0628 0471 .0531 .0498
40 6 1.0 .302 280 .255 291 376 309 271
.0965 .106 .0986 123 101 A11 102
80 7 0.1 .0298 .0272 .0268 0273 0542 .0300 0287
00766 .00702 .00692 .00835 .00604 .00724  .00698
80 7 0.5 .129 11 .105 117 173 124 112
0342 .0360  .0341 .0463 .0333  .0380 .0354
80 7 1.0 .231 .206 189 215 .298 233 205
0680 .0732  .0689 .0903 0717 .0773 0721

Table 1: Comparison of square root of average squared error loss. The underlying regression
function is f(z) = exp(z — 1), with design points equally spaced on (0,2) and i.i.d. normal
errors. The

We see that the more restrictions on the shape, the better the fit, for
both the standard shape-restricted estimator and for the regression
splines. The convex and increasing-convex regression splines have
typically lower SASEL than the smoothing spline, but the SASEL
for the isotonic regression spline is a bit higher. The variation of the

fit tends to be highest for the smoothing splines.

28



Estimating the model variance
The MLE SSE/n is as usual too small.

If d is the dimension of the face on which the
projection lands (including the v vectors), then
we can show that SSE /(n—d) is also too small.

In fact, we can show that

F(SSE)
2

n—2E(D) < <n-—FE(D),

%
This is important when D can range from zero
to n — 1, but when the number of edges is small
compared to n, the estimator SSE/(n — d) is
close to correct and much more stable than for
standard shape-restricted regression.
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Simulations results for estimating the model variance.
MLE uses standard shape-restricted regression and SSE /n.
IQRS uses increasing quadratic regression spline; SSE /(n — d).

M-W uses standard shape-restricted regression and SSE/(n—1.5d).

IQRS MLE M-W
n o mean std dev mean std dev mean std dev
20 0.1 .0994 018 .035 .015  .240  .096
40 0.1 0996 .012 .054  .011 161 062
80 0.1 .0998 .0083 .069 .0078 111 013
20 0.5 488 089  .341 078 574 167
40 0.5 494  .060 397 056 523  .074
80 0.5 497  .041 433 039 509  .046
20 1.0 972 173 611 249 1.20 547
40 1.0 98  .118 736 192 1.08 284
80 1.0 992 082 825 144 1.03  .180
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ANCOVA modeling with regression splines

We can add a categorical covariate to the regres-
sion model. The simplest example is adding a
dummy variable so that the model is

y; = flx;) + Bd; + o€, i=1,...,n,

where d; is either zero or cone according to the
group of the ith observation. (For more groups,
we add more dummy variables.)

The least-squares estimators for f and 3 can be
found simultaneously.
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log(betaplasma)

Suppose we are also interested in whether smok-
ing is associated with blood plasma levels of
beta carotene. We can fit parallel decreasing
convex regression splines.

The solid lines represent splines using five inte-
rior knots, and the dashed lines are splines using
eight interior knots.

~ — ©  NON-SMOKERS
o A SMOKERS
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BMI
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If the interest is in testing the null hypothesis
that the categorical variable has no effect on the
response, we can get an exact test statistic for

balanced design models and known o2.

Consider the statistic

SSEy— SSE)/(g—1)
SSE/(n—g—d—r)

where ¢ is the number of groups, and SSEj is
for the model without the categorical variable.

ook

This would have an F'(g—1, n—g—d—r) density
under H( if the shape restrictions were absent or
not binding, and if the true regression function
were contained in the linear space spanned by
the edges and the vectors in V.

Assuming that the statistic has approximately
the correct null density gives good results in sim-
ulations.
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true f n g o effect size OLS Pr(rejH,) NP Pr(rejHy)
linear 10 2 1 0 0.050 0.053
linear 20 2 1 0 0.050 0.051
linear 40 2 1 0 0.050 0.051
exp(r —1) 10 2 1 0 0.046 0.053
explr —1) 10 2 1 0 0.047 0.051
exple —1) 10 2 1 0 0.047 0.051
exp(r —1) 10 2 4 0 0.032 0.051
explr —1) 10 2 4 0 0.033 0.051
exple —1) 10 2 4 0 0.034 0.050
linear 10 3 1 0,0 0.050 0.053
linear 20 3 1 0,0 0.050 0.051
linear 40 3 1 0,0 0.050 0.051
exp(x —1) 10 3 1 0,0 0.046 0.053
explz—1) 20 3 1 00 0.046 0.051
expz —1) 40 3 1 00 0.046 0.050

Simulations results to determine test sizes for
the ANCOVA models. Several sample sizes are
chosen for either two or three levels of the cat-
egorical variable.
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true f n g effect size OLS Pr(rejHy) NP Pr(rejH)
linear 10 2 1 0.500 0.505
linear 20 2 1 0.500 0.504
linear 40 2 1 0.500 0.503
exp(r —1) 10 2 1 0.500 0.517
explr —1) 20 2 1 0.500 0.509
explz —1) 40 2 1 0.500 0.505
exp(r —1) 10 2 0.5 0.500 0.552
exp(r —1) 20 2 0.5 0.500 0.522
explz —1) 40 2 05 0.500 0.512
exp(rx —1) 10 2 0.25 0.500 0.778
exp(r —1) 20 2 0.25 0.500 0.091
exp(x —1) 40 2 0.25 0.500 0.538
linear 10 3 0.25,0.25 0.500 0.498
linear 20 3 0.25,0.25 0.500 0.500
linear 40 3 0.25,0.25 0.500 0.501
exp(x —1) 10 3 0.25,0.25 0.500 0.854
exp(z —1) 20 3 0.25,0.25 0.500 0.618
explz —1) 40 3 0.25,0.25 0.500 0.547

Simulations results for ANCOVA models. Power
is compared with the F-test using a linear rela-
tionship between the response and the continu-
ous predictor.
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Risk of Infection

Hospital infection risk data, where infection risk
is modeled as an increasing concave function ot
average daily patient load, for four regions of

the U.S.
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