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ABSTRACT

An increasingly important concern in environmental studies is
the need to combine information from diverse sources that relate to
a common endpoint or effect and to combine environmental monitoring

and assessment data. These are statistical problems, and
statistical techniques are integral to analyses that combine
environmental information. These techniques are still under

development, however, as modern statistical methods for combining
environmental information usually require subject-specific
formulations. Herein, we discuss opportunities for statistical
research in the area of combining environmental information, based
on information presented during a 1993 Workshop on Statistical
Methods for Combining Environmental Information, organized by the
National 1Institute of Statistical Sciences and the U.S.
Environmental Protection Agency.
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1. INTRODUCTION

Combining information is a growing issue of importance in
environmental science, for which statistical methods play a central
role. To explore statistical problems in combining information as
posed by environmetric applications, the National Institute of
Statistical Sciences (NISS) and the U.S. Environmental Protection
Agency (US EPA) organized a Workshop on Statistical Methods for
Combining Environmental Information that was held September 27-28,
1993 in Chapel Hill, NC. The Workshop was organized around a
selection of environmental problems and studies that demonstrate
multiple needs for combining environmental information.

The program covered the following environmental data problems.
(1) Combining environmental data from multiple and diverse
sources: statistical reporting on environmental conditions and
trends in aquatic, terrestrial, and atmospheric settings, and
combining design-based ecological data and observed data for

environmental assessment purposes. (2) Combining environmental
epidemiologic studies for hazard identification and risk
assessment. Associated public health issues include assessing

exposures to environmental tobacco smoke, dioxin, and nitrogen
dioxide, assessing acute inhalation risk, assessing effectiveness
of lead abatement strategies, and using prior information and
hierarchical Bayes methods to model uncertainty in effect
estimation. (3) Forming environmental indicators and indexes,
including issues of aggregation, combined mapping procedures, and
multiple data source conformance.

In this paper, we report on presentations and discussions from
the Workshop, and expand upon some of the questions and open areas
of environmetric research that were identified. Our goal is to
identify and disseminate methods and research themes leading to
solutions for these problems, and to stimulate further
interdisciplinary research in this important area.

2. COMBINING ENVIRONMENTAL DATA FOR ENVIRONMENTAL MONITORING AND
ECOLOGICAL ASSESSMENT

2.1. EXAMPLE: THE U.S. ENVIRONMENTAL MONITORING AND ASSESSMENT
PROGRAM (EMAP)

The Environmental Monitoring and Assessment Program (EMAP) is
a multi-agency program of the U.S. government being organized by
the U.S. Environmental Protection Agency. The objectives of EMAP
are: to determine the extent of the nation’s ecological resources;
to define status and trends in the condition of these resources; to
identify possible causes of the current and changing condition of
the resources; and to report regularly on the findings. EMAP poses
several challenging problems in the area of statistical methods for
combining environmental information.
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The scope of EMAP comprises all ecological resources,

categorized within eight resource groups: landscapes, forests,
agroecosystems, arid ecosystems, estuaries, the Great Lakes, lakes
and streams, and wetlands. Information on status and trends in

ecological condition will be developed by geographic region for
each resource. This requires ecological monitoring, assessment and
reporting across time and space by region, resource category and
individual resources, necessitating the development of ecologically
meaningful environmental indicators with suitable statistical

properties. An important EMAP goal is to combine environmental
indicators within and across resources into ecological indexes
designed to measure overall ecological well-being. As with the

development of any statistical index, the first issue of
statistical importance here 1is the proper delineation and
aggregation of the data (Ott 1978). This is only the first step,
however, as EMAP is based on an approach to ecological assessment
which stresses extension beyond simple data aggregation to the
integration and synthesis of information.

2.2. COMBINING PROBABILITY BASED AND NON-PROBABILITY BASED
MONITORING DATA

EMAP programs will collect data on ecological resources using
multi-stage probability based spatial sampling designs; see Stevens
(1994) for the EMAP sampling strategy. There is in existence a
large quantity and variety of environmental monitoring data from
non-EMAP sources from either other forms of probability designs or,
most typically, not based on a probability design at all. Such
data will continue to be collected by researchers in large volume
into the foreseeable future, and these data are likely to be based
on different forms of sampling designs, to cover different but
overlapping ecological populations and time periods, and to measure
different characteristics or measure EMAP characteristics
differently. The processes of identifying and collecting the data,
performing data quality assurance, analyzing and reporting on the
data, and the policy actions resulting therefrom are quite complex
as well as time and cost intensive. Within this context, the EMAP
strategy is to make maximum appropriate use of relevant data from
all sources.

In addition to complexity and cost, ecological monitoring
programs share the following characteristics: limited coordination
of design and measurements across monitoring programs; different
variables or indicators measured; different time frequency of
sampling with a year; different number of years sampled; and,
different objectives of monitoring programs (e.g., emphasis on
monitoring predetermined sites versus emphasis on measuring
predetermined ecological resource characteristics).

Studies focusing on ecological regions typically fall into one
of the following three categories: probability based sample
studies of well-defined ecological resource populations designed to
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estimate status and trends of these characteristics; sites selected
via purposive (i.e., non-random) sampling from multiple resource
populations used to represent or model surrounding regions (e.g.,
regions defined based on the sites using variography (see Cressie
1991); and, predetermined regions (e.g., regions based on geo-
political boundaries) from which representative sites are
purposively selected.

The EMAP objectives pose a suite of statistical problems
involving the combination of probability based monitoring data
(P-sample data) with other probability based data and with

non-probability based data (NP-sample data). Candidates for data
combination include environmental monitoring data among the
following types and sources: compliance monitoring data from

designated sites; data from point source impact assessment sites;
data from ecological resource research sites and studies; state
monitoring data of special interest sites; local region probability
based data and studies of ecological resources; and national and
regional probability based studies of ecological resources.

Examples of environmental data sets, studies, or other
information, within the estuary resource category include: EMAP
estuarine monitoring data; the U.S. National Oceanographic and
Atmospheric Administration (NOAA) Status and Trends Program data
involving sites representative of large coastal areas (but avoiding
known sites exhibiting extreme characteristics); the US EPA
National Estuaries Program involving approximately 20 designated
estuaries monitored independently; and various state estuary
monitoring programs or studies, typically designed for compliance
or regulatory purposes with sites selected to meet established
criteria. Examples from the lake resource category include: EMAP
Surface Waters Lake Monitoring Program based on a probability
sample of a well-defined 1lake population; State 305(b) lake
monitoring programs which exhibit different selection criteria and
both fixed and (annually) changing sample populations of lakes;
and, U.S. Geological Survey (USGS) surface water monitoring
networks involving purposive sampling of sites based on scientific
judgment and multiple annual samples. In addition, national
probability based ecological monitoring programs include: EMAP;
NOAA’'s National Wetlands Status and Trends; the U.S. Forest
Service’s Forest Inventory and Analysis monitoring programs; the
National Resource Inventory; and, various agroecosystems monitoring
programs of the National Agricultural Statistics Service.

The kinds of questions ecological monitoring programs are
designed to answer are numerous and varied. For example, what is
the status (amount or extent) of an ecological resource in a
region? What is the trend in the status of the resource? Has the
spatial pattern/geographic distribution of the resource changed
over the reference time period? What 1is the status of the
ecological condition of the resource in the region? And, what is
the trend in the condition of the resource? Typical information
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needed to combine monitoring data to address these questions
involves knowledge of site selection procedures; knowledge of exact
definition of attributes measured; knowledge of sampling, response
and reporting periods for attributes; knowledge of the quality of
the data; and, knowledge of the ecological resource population of
interest in each study or program, if any.

The standard data combination paradigms in ecological
monitoring are: combining data or estimates from two or more P-
samples; combining P-sample data with NP-sample site-based data
from one or more monitoring programs; and combining NP-sample
site-based data from two or more monitoring programs. Statistical
techniques are available for simplified cases of the first two
paradigms (see below); however, rigorous statistical work is needed
for the third.

Two standard statistical approaches are available for
combining estimates from two probability samples (a P,-sample and
a P,-sample). The first is to generate estimates independently
from the P,- and P,-samples and then combine the estimates using
weighting. Strata can be defined based on partitions of the two
overlapping populations, enabling the construction of combined
subpopulation estimates that can be used to post-stratify the
samples. The multiple frame methodology of Hartley (1974) then can
be used to produce combined estimates. Alternatively, the P,- and
P,-samples can be combined into a single probability sample
(Overton 1990). This requires computing combined-sample inclusion
probabilities for all sample units, which can be done if both the
first and second order inclusion probabllltles for the P,- and
P,-samples are available.

Overton (1990) and Overton, Young and Overton (1993) address
the problem of combining a P-sample with a NP-sample. The
NP-sample must be a subset of the population represented by the
P-sample. The population is then partitioned such that one of the
partitions is the NP-sample. The crucial assumption is that the
NP-sample is a probability based (P,-) sample of some (larger)
subset of the population. In general, this is difficult to verify
and is liable to introduce systematic bias into combined sample
estimates. Overton suggests validating this assumption by
demonstrating similarity of P,-frame attributes of the NP-sample
with population subsets. This might be accomplished using
statistical record linkage. However, little is known about record
linkage in the environmental context; see Cox and Boruch (1988),
Rodgers (1984) and references therein for discussion of statistical
record linkage in the socio-economic context. An alternative is to
treat the NP-sample as a separate stratum of self-representing
units, but this is unlikely to improve precision. Once a
probability basis for the NP-sample is created, the problem has
been reduced to that of combining two probability samples, as
above. Strata can be based on similarity clusters of frame



attributes, from which combined sample inclusion probabilities can
be computed.

A conceptual data model for combining data from a P-sample
with data from an NP-sample (developed by A. Olsen, US EPA), is
based on the following matrix:

Y., =
LN ANF YNM YND
where

L, = spatial location of P-sample units

Ay = frame attributes of P-sample units

You = variables directly measured on P-sample units

Yoo = variables derived from external data and associated

with P-sample units

Ly = spatial location of NP-sample sites

Ap = frame attributes of NP-sample sites

Yo = variables directly measured on NP-sample sites

Yoo = variables derived from external data and associated

with NP-sample sites.

The conceptual data model Y, defines the data available at
time t for use 1in statistical estimation of a population
characteristic. The data model recognizes specific types of data
attributes that are important in environmental applications,

probability-based sampling, and spatial statistics. The upper
portion of the matrix addresses the P-sample attributes; the lower
addresses NP-sample attributes. L, and Ly define the spatial

location of sample units. Typically, location is given as latitude
and longitude coordinates; or at least can be easily converted to
them, as it is not sufficient to have location coordinates given in

an arbitrary, non-geo-referenced coordinate system. A, and A,
contain frame attributes as wusually defined by survey design
literature. For example, lake area and stream order are two

attributes that are used in the sample design for lakes and streams
in EMAP. Other attributes could be acquired that may not be used
directly in structuring the sampling design; but could be used in
a ratio or regression estimation procedure (e.g. lake elevation).
Y., are attributes measured directly on sampling units in the

P-sample. Examples are crown transparency in forests, index of
biotic integrity in streams, and net primary productivity for
agricultural land. These attributes are collected under

well-defined protocols and field methods. In some situations, Yy,
attributes are available for NP-sample units.

A critical issue is knowing if the NP-sample attributes were
collected using same procedures as the P-sample, or if they are
similar attributes that have been, or must be, calibrated prior to
using in joint estimation procedure. Y, and Y, are variables
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derived from sources other than direct measurements on a sampling
unit in a monitoring program. Examples would be soil
characteristics as determined from Soil Conservation Service soils
databases or point source discharge into stream from an EPA
database. A second critical issue is establishing the linkage
between the external database elements and the sampling unit from
the monitoring program(s). Spatial 1location is an important
linkage function; however, nearest neighbor is only one approach
for spatial linkage.

Probability design-based and some model-based inference of
status can be based on A, and Y,,. Model-based inference of status
that incorporates spatial location can be based on L,, A, and Y.
In some cases, variables Y,, derived from external data can be
associated with a P-sample unit. Estimates of status for these
variables and associations of these variables with directly
measured variables Y, may be of interest. Often, directly measured
variables Y, from NP-sample sites that measure the same variables
Y,y from the P-sample are available.

Overton (1990) suggests that (Y, Yw) relationships can be
combined with Y, data to construct derived variables Y,,, as
follows. Model (Yy, Yy) relationships via regression and apply the
regression equations to Y, to estimate Y. Problems with this
procedure are the potential presence of undetected selection bias
in the NP-sample and failure of the regression to account for true
variation in the Y,,. An important related question is whether A,
and Y, information can be combined or associated with A, and Y.
Clearly, much statistical research remains in the process of
developing valid and useful statistical inferences for these data
combination scenarios.

2.3. TISSUES IN COMBINING SPATIALLY REFERENCED MONITORING AND
ASSESSMENT DATA

Environmental monitoring data are inherently spatial, and
spatial statistics has an important role to play in modeling and
understanding environmental and ecological problems.
Eco-environmental data bases typically exhibit the following
characteristics: continuous data from monitoring measurements or
laboratory analysis combined with typically fewer categorical and
classificatory variables; data on some variables such as vegetation
collected and possibly stored in image form; long collection
periods needed to detect trends; and, presence of important spatial
variables that are not necessarily well-defined (e.g., determining
boundaries of geo-political units from satellite images). Analyses
of eco-environmental data share the following features: lack of
well-developed methods of aggregation; interest in heterogeneous,
"combined" phenomena rather than homogeneous properties of
variables; and, greater interest in spatial rather than population
distributions. Differences in statistical approaches to spatial
problems exist between environmental and ecological problems, viz.,
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geostatistical models have traditionally been used in spatial
environmental statistics, while lattice models and point processes
are more commonly used in spatial ecological statistics. These
approaches need to be combined for eco-environmental applications,
and the study of eco-environmental relationships and dynamics
demands further development and use of spatio-temporal statistics.

Application of spatial statistics 1is Dbased upon the
intuitively appealing notion that nearby data or objects are more
likely to be more alike than those far apart. This observation
goes back at least as far as Fisher (1935), who noted "after
choosing the area, we usually have no guidance beyond the widely
verifiable fact that patches in close proximity are commonly more
alike, as judged by the yield of crops, than those which are far
apart." Thus, natural spatial correlation causes one to lose
access to most statistical theory which is predicated on
independent, identically distributed (i.i.d.) errors. Attempts to
transfer time series theory to the spatial context has been of
some, but limited value. Spatial dependence needs to be recognized
and modelled in modern eco-environmental data analysis.

In addition to gaps in the theory of spatial statistics, there
are practical obstacles to analyzing and combining spatial data.
Two such obstacles are: difficulties in referencing spatial data
in terms of assigning and manipulating spatial labels for
statistical analysis; and, dealing with data designated as
"nondetects" in laboratory studies (where information can be
ignored or deleted).

The emergence of so-called geographic information systems
(GIS) is beginning to address the problem of spatial labels. GIS
is an integrated computer hardware and software system designed to

collect (input), manage (store, retrieve), analyze (aggregate,
estimate, optimize, simulate), and display (map, graph, tabulate)
spatially referenced data. Application of GIS is a powerful

computing tool with desirable capabilities for spatial labeling,
but unfortunately it has not been applied in a consistent
statistical manner, and has not yet become a statistical tool
(Cressie and ver Hoef 1993). Limited attempts to piece together
GIS systems (e.g., ARC/INFO, GRASS) with statistical software
systems (e.g., SAS, S-PLUS) provide inadequate solutions, since, in
current systems, statistical analysis and computations such as
variance estimation are based predominately on classical i.i.d.
assumptions which are often inappropriate in the spatial context.

Similarly, the nondetect problem can be viewed simply, as
essentially a censored data problem, and is an important area where
statistical theory and practice has substantial application; see
Lambert, Peterson, and Terpenning (1991). Certain laboratory
measurements are reported as nondetects (ND), either because the
value falls below a threshold limit of detection (LOD) value of the
instrumentation or because the presence of the compound of interest
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cannot be verified reliably. This inability to quantify the
concentration of the chemical may be due to 1limitations in
instrumentation, laboratory protocol, or both. In the former case,
nondetect values may vary from instrument to instrument or among
laboratory technicians. In the latter case, protocol definitions
may cause otherwise useful measurement data to be discarded. 1In
both cases, it is desirable to estimate missing values and their
effect on estimates of dispersion in the data.

To the statistician, laboratory procedures involving
nondetects may appear to be an overly rigid interpretation of
Neyman-Pearson hypothesis testing, in effect forcing an

accept/reject philosophy for data quality assurance. Imputing 0,
LOD or LOD/2 for ND, or the use of nonparametric ranking or
continuous models for censored data, often perform poorly. This is
not uncommon when dealing with spatial data. Lambert, Peterson and
Terpenning (1991) address the nondetect problem by using local
logistic regression to model the probabilities of detection for
both measured and actual concentrations. Another approach is to
use the geostatistical method known as kriging, which involves the
use of optimal spatial averaging; see Cressie (1990; 1991) and
Myers (1991).

A spatial statistic of frequent interest is the volume average

z (B)

(1/]B]) fB z () du

where B is the support of =z (B). Support is a key concept in
spatial statistics with particular importance in environmental
applications. A generic problem in volume average estimation is to

predict z(B) or a function g(z(B)), based on monitoring data. The
geostatistical method of choice here is kriging, and it solves this
problem in a careful way. An advantage of kriging and other

averaging methods is the reduction of measurement error through the
modeling process. Through kriging, nondetect values are estimable.
In addition, kriging can be employed to combine P-sample and
NP-sample based data, as described below.

An environmetric application of the use of kriging to combine
P-sample and NP-sample environmental data is the snow water
equivalent (SWE) problem faced by the National Weather Service.
The SWE predicts the amount of water in streams during the spring
thaw based on data from snow course sites (P-sample data) and

airborne surveys (NP-sample data). This problem is of particular
importance in the western United States. A spatial statistical
model for the SWE problem is constructed as follows. Let z(s)

denote the SWE at location s. A geostatistical model is assumed of
the general form:



E(z

z(s)) X(s)'B
cov(z(s),z(u))
(u))

C(s,u) or
2Y(s,u)

var(z(s) - z

where z(B) denotes the volume average of SWE with support B. The
geostatistical model is estimated from P-sample data located at
snow course sites {s;: i=1,...,n} and airborne survey sites ({B;:
i=n+1,...,m}. Although SWE could be estimated (using kriging)
separately from the snow course sites and the airborne data, a
combined kriging estimate would combine the strengths and
compensate for the weaknesses of both data sets: a combined
estimate would be based on a larger data set, and it would take
advantage of the generally more representative airborne estimates.
However, model complexities arise from factors such as irregular
spacing of sites and differences in types of support, viz., point
support for snow course sites and block support for airborne
surveys, necessitating care in the modelling and further research.
See Carroll, Day, Cressie, and Carroll (1994) for discussion of
these issues and the SWE problem.

Many similar useful applications are envisioned in the area of
combination of spatial environmental data.

2.4 CHESAPEAKE BAY POLLUTION STUDY

Another environmetric application of combining environmental
data occurs with a joint US EPA/State of Maryland study of nutrient
reduction due to pollution in Chesapeake Bay. The study is in the
planning stages, and design issues are being considered of where
and, how to sample certain Bay locations. Of interest is how
nutrient abundance affects the plant and animal communities of the
sediment (the benthos) of the Bay. A nutrient index will be
employed to assess conditions of the benthic assemblages at
particular locations within the Bay. The index consists of a
weighted sum of various species quantifiers:

zZ = .011v + .67t + .8l700 + .5770 + .465Yy

where for each location sampled, vV is the salinity-adjusted number
of species observed, ® is the percent of total benthic bivalve
abundance, o is the number of amphipods (crustaceans with multi-
purpose feet), ® is the average weight per polychaete (a type of
segmented marine worm), and Y is the number of capitellids (a
special form of polychaete) sampled. The index is taken over 31
different locations throughout the Bay, representing four different
forms of aquatic ecosystems: tidal fresh/oligohaline; 1low
mesohaline; shallow high mesohaline; and, deep high mesohaline.

An initial goal of the study is to represent the "benthic
quality" of the Chesapeake Bay in the form of a map based on the
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benthic invertebrate summary index Z. From this, other assessments
can be made, such as using the mapped summary index to estimate the
percentage of Bay acreage exhibiting degraded biotic conditions, or
to estimate the portion of acreage that might be restored by
reducing pollutants that affect benthic invertebrates. Of course,
any map of the Bay developed from Z will be affected by spatial
variation across the 31 different sample strata; hence, methods for
spatial data combination are important for the construction and use
of the index.

A major concern in this data combination is to make the
mapping as robust as possible to effects of unadjusted spatial
variation within and across strata. To do so, the mapping
procedure is based on a two-part model: large-scale variation such
as spatial trends and other covariates that model the effects along
large spatial scales; and, small-scale variation due to measurement
error, spatial correlation, and other spatial small-scale effects.
The large-scale variation may be estimated using regression methods
such as least squares or L, regression (Narula and Wellington
1982): from the sample strata in the Bay, the observed index
values are combined using a linear regression model incorporating
location-specific covariates such as stratum depth, latitude, and

longitude, to estimate a predicted value, Z(s) , for the large-
scale variation at each stratum s.

This predicted value does not correct for small-scale effects
such as spatial correlation, however. For this, the small-scale
variation is estimated via more specialized methods such as
kriging, wherein the spatial correlations are modelled after
removing the large-scale trends. This leads to a kriged predicted

value, and from that, a kriged residual, g(s) . Then, the
regression predictor and the kriged residual are added to form a

hybrid predictor, Z(s) + £(s) , for any spatial stratum s within

the Bay. By construction, this hybrid calculation corrects for
both small-scale spatial effects and large-scale trends. It is
anticipated that the hybrid analysis will enhance scientists'
ability to report ecological data for public use.

2.5. DEVELOPING AND COMBINING ECOLOGICAL INDICATORS AND INDEXES

EMAP will measure and report ecological condition by
ecological indicators such as <crown height in forests,
eutrophication of lakes, or acidity in soil. Indicator values will
be constructed on scales useful for assessment purposes. At a
minimum, values will be partitioned into nominal/subnominal
categories, which can be used for reporting, comparison and,
potentially, regulatory purposes. Estimates of trend in indicator

11



values will be used to identify and assess changes in ecological
condition.

Many environmental policy questions will require answers on
large geographic or ecological scales. For instance, what is the
condition of lakes in the Northeast? Or, how has the ecological
condition of the Louisianian Province changed over the past ten
years? From the policy perspective, it is desirable to aggregate
or in some other way combine ecological indicators across
geographic regions, ecological resources and resource groups. For
example, what can be said quantitatively about the condition of
streams in the West given indicator data on individual watersheds?
How reliable are such statements statistically? And, how can this
information be used over time to measure the progress of clean-up
and remediation programs-? From the reporting and regulatory
perspective, it 1is desirable to be able to combine different
indicators into eco-environmental indexes that would convey
broad-gauge measures of environmental health to the public and
policy makers. For example, was the condition of forests in the
Northwest during the past year good or poor? And, how does this
year compare with the last (ten) year(s)?

Much is known and is in use for the quantity- and monetary-
based indicators and indexes familiar in economic statistics,
stemming from the work of German economists Etienne Laspeyres and

Hermann Paasche during the mid-nineteenth century. The (price)
indexes bearing their names illustrate some of the elementary
statistical problems encountered in index construction. Both

indexes measure change in price (p) over time for a fixed market
basket of guantities (q) using the arithmetic average: C, = Xp,;.q;
and define the index as I, = C./C, relative to a reference time T =
0. They differ in terms of the time at which the market basket
quantities q; are selected. Indexes also can be constructed using
geometric means or other measures of centrality including, more
recently, the use of regression. Early work on the statistical
properties of indexes was performed by Fisher (1922). ISI (1956)
provides an historical bibliography. All of this work deserves
consideration as problems--o0ld and new--arise in the development
and combination of environmental indexes.

Some work has been done on index construction elsewhere in the
environmental context which can be brought to bear in the
ecological context. The general problem was considered from the
policy perspective by the National Academy of Sciences (NAS 1975),
which concluded that environmental indexes had an important role
in: assisting policy formulation; providing a means for evaluating
the effectiveness of environmental protection programs; assisting
in designing such programs; and, facilitating communication with
the public on environmental conditions and progress towards
environmental enhancement. Subsequently, Ott (1978) offered a
comprehensive approach towards developing environmental indexes,
including detailed examination of air and water quality indexes.
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NAS (1975) recommended that a uniform national system of air
quality indexes be developed and adopted. This was undertaken by
US EPA, resulting in the national Pollutant Standards Index (PSI).
The PSI takes daily air pollution information for five pollutants
for which exist short term air quality standards or significant
harm levels have been established (CO, SO,, PM,,, O; and NO,) and
computes a single daily air quality index value. The air quality
indicator information for each pollutant is reported on a common
scale (0 - 500) comprising five increasing health effects (risk)
categories ranging from Good to Hazardous. The value of the daily
index is the maximum of the five indicator wvalues, ensuring that
the index value does not eclipse (mask) the wvalue of any
constituent pollutant. Hunt (1991) provides a comprehensive
discussion of the issues and methodology surrounding the
development of the PSI. This experience should provide a baseline
for the present problem of developing broadly useful ecological
indicators and indexes.

These problems will require advanced, practical formulations
and solutions from the statistical and environmental research
communities. Key ecological issues are: to identify meaningful
indicators and indexes and measurement scales, to develop robust
definitions of nominal/subnominal and other meaningful descriptors
of condition, and to determine what data need to be combined at
what levels for policy, reporting and research purposes. Key
statistical issues will be in aggregation, reliability and other
statistical properties of the indicators and indexes, and in the
development of methods for presenting and analyzing this
information, including graphical methods.

A significant statistical issue in this and other
environmental contexts is how to adjust indicator values for local
conditions such as weather. The related environmental policy issue

is whether and when to do so. Interdisciplinary issues include
determining what information is 1lost or masked through data
combination, resolving trade-offs Dbetween statistical and

ecological properties of the construction of indicators and
indexes, and developing data sources and methods for evaluating and
recalibrating (benchmarking) indicators and indexes periodically.

3. COMBINING INFORMATION IN ENVIRONMENTAL EPIDEMIOLOGY

An important problem in combining environmental information is
application of meta-analytic methods (Hedges and Olkin 1985; Wolf
1986) to epidemiology and environmental medicine. Meta-analysis is
the rubric used to describe quantitative methods for combining
evidence across studies (Hedges and Olkin 1985, p. 13).

The results of clinical or environmetric studies are often
reported as p-values which measure the statistical significance of
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test results: the p-value is the probability of observing the test
results or more extreme results under the null hypothesis (i.e.,
the hypothesis that the association or effect of interest is not
present). A standard meta-analytic technique which is often very
powerful (Koziol and Perlman 1978) is a simple method due to Fisher
(1948) for combining p-values from independent studies. To combine
the results of K independent studies that test the same hypothesis,
the corresponding p-values p, from the individual studies are
combined to form:

K
-2) " 1n(p,)
%=1

which is known to exhibit a y* distribution with 2K df; see
Koziol and Perlman (1978) or Elston (1991). Fisher’s method is

also known as the inverse %? method. Another method, the inverse
normal method, involves the standard normal variate:

K
Y o(p))
- 1

VK

F4

where @®(z) denotes the cumulative distribution function along
either tail of the standard normal distribution. The combined p-

value 1is p=®(2) . Weighted versions of both methods are
available; see Hedges and Olkin (1985) for details and a full
discussion of meta-analytic methods. The formulation of the

inverse normal method above illustrates the power of meta-analysis:

among K (one-tailed) studies, significance in JE studies 1is

sufficient to ensure significance in the combined analysis.

In environmental applications, meta-analysis is often used for
quantitative combination and synthesis of data over multiple
studies on a specific endpoint. It is in increasing use in the
biomedical sciences and clinical trials (Chalmers 1991), since it
is uncommon for a single, well-designed biological or clinical
experiment or study to evaluate completely hazardous materials and
assess definitively population exposure risk(s). Rather, many
small epidemiologic and biomedical studies are carried out on
environmental stimuli under different conditions, on different
populations, wusing different exposure regimens or different
chemical metabolites, etc. These smaller studies provide limited
amounts of information about environmental phenomena or effects,
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especially those that are more complex than perhaps originally
perceived, or that cannot be examined fully under limited study
designs or budgets. In some cases, the effects of interest are
small and therefore hard to detect with limited sample sizes; or,
data on too many different endpoints may mask or divert attention
from small or highly-localized effects.

Methods such as meta-analysis for combining information are
intended to synthesize disparate data into a single, conclusive
statement about the phenomenon under study, from which policy
decisions and other issues of scientific and social importance may
be based. In this section, we discuss a number of environmental
and biomedical studies where combining information has surfaced in
important ways and has played an crucial role in the synthesis of
understanding about an environmental/biomedical issue, and also
note cases where more work needs to be done.

3.1. COMBINING EPIDEMIOLOGICAL STUDIES: ENVIRONMENTAL TOBACCO
SMOKE

An important example of the potential of combined analyses
concerns the recent US EPA study on health effects of environmental
tobacco smoke (ETS) (US EPA 1992). Thirty epidemiologic studies
from eight countries were considered as part of the EPA analysis.
In all cases, the measured effect of interest was an increase in
risk for lung cancer mortality over risk for non-exposed controls;
the associated relative risk is simply the ratio of probability of

exposure death to unexposed death: Pr{D|E,}/Pr{D|E.} . When the

disease prevalence in the population is small, say, less than 5%,
relative risk may be estimated via the odds ratio: the ratio of
odds of exposure for cancer deaths (cases) to odds of exposure for
controls (Breslow and Day 1980). Each set of odds simplifies to
the number of exposed deaths--cases or control--divided by the
number of corresponding unexposed deaths. The odds ratio is then
simply "cancer odds" divided by "control odds." Since estimates of
odds ratios and their large-sample variances are more easily and
reliably calculated than relative risks, statistical methods are
employed for estimating and testing relative risks via odds ratios
(Breslow and Day 1980). When an odds ratio equals 1.0, no
increased risk is evidenced. Various statistical analyses can
identify when the odds ratio is significantly greater (less) than
1.0, corresponding to a significant increase (decrease) in risk
(Breslow and day 1980; Wallenstein and Bodian 1987). More complex
sampling scenarios that include, for example, studies of an entire
cohort of individuals over an extended period, yield more complex
estimators of the relative risk (Breslow and Day 1987). In the ETS
study, these were employed whenever necessary.

The results from the 30 individual ETS studies vyielded
relative risk estimates ranging from 0.88 to above 2.0, giving
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contradictory information. Indeed, when analyzed separately, only
one of the eleven U.S.-based studies showed a significant increase
in the risk of lung cancer mortality after ETS exposure. Thus, at
issue in the EPA analysis was whether proper combination of the
individual estimated risks could identify an overall increased risk
of lung cancer death due to ETS exposure. The data combination
involved a simple averaging method to approximate exposure levels
from the various forms of ETS, including sidestream smoke and
exhaled mainstream smoke, and required construction of relative
risk models that adjusted for background exposures and for
potential systematic downward bias due to control group exposures
to ETS. For example, to correct for background exposures, the
adjusted relative risk was modelled as

risk with ETS exposure _ 1+ ZBdN

RR_.. =
adj  risk without ETS exposure

where Z is the ratio between the mean dose level in the exposed

group and the mean dose level in the unexposed group, [ is the

increased risk per unit dose, and 4, is the mean dose level in the
unexposed group. The estimates are then pooled, so that, on a
logarithmic scale:

R _ w;log (RR,)
109' (‘R‘R.Pooled) = Z
yw

where the study weights are simply the inverse estimated variances
of the log-relative risk estimates:

_ 1
var(log (RR,)

Exponentiating the log-RR estimate vyields an estimate of the
combined relative risk; see US EPA (1992) for greater detail,
including some more complex models employed for the adjusted
relative risk.

When completed, combination over all U.S. studies produced a
statistically significant (p = .02) estimate of relative risk of
1.19. Adjusted for background exposures, the risk estimate rose to
1.59, i.e., an estimated 59% increase in lung cancer mortality in
U.S. non-smokers when exposed to ETS. Extensions of these
approaches, leading to more complex models of exposure risk, are
under investigation by EPA for the potent toxin dioxin.
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3.2. COMBINING EPIDEMIOLOGICAL STUDIES: NITROGEN DIOXIDE STUDIES

As suggested above, environmental epidemiologic studies can
become fairly complex when considering human exposures to
environmental stimuli. Another example of this feature involves a
US EPA meta-analysis of respiratory damage after indoor exposure to
nitrogen dioxide, NO,. The study was undertaken in an attempt to
integrate information on the relationship of NO, exposure to
respiratory illness, since, in similar fashion to the ETS study,
many previous studies had given mixed results on the health effects
of NO, exposure.

Using as an outcome variable the presence of adverse lower
respiratory symptoms in children aged 5 to 12 years, odds ratios
were employed as estimates of increased relative risk in the
exposed population. The meta-analysis combined a set of nine North
American and western European studies, wherein estimated odds
ratios for increased lower respiratory distress ranged from 0.75 to
1.49. Based on separate analyses, only four of the nine odds
ratios suggested a significant increase in respiratory distress due
to NO, exposure. Data combination and synthesis of these results
involved standard meta-analytic techniques for odds ratio
combination (Hasselblad 1994, Sec. 5): 1likelihood functions for
each separate odds ratio are constructed, and, under an
independence assumption, multiplied to yield a likelihood for the
combined odds ratio, which, when maximized, yields an estimate of
the combined odds ratio. The results showed a combined odds ratio
of 1.17, with an associated 95% confidence interval from 1.11 to
1.23. That is, the meta-analysis suggested that an increase in NO,
exposure can lead to an increased risk of respiratory illness of
about 10-20% over unexposed controls. In this case, the meta-
analysis gave good evidence of an important lower respiratory
effect due to increased NO, exposure.

Further adjustments in the NO, study for additional sources of
variability, such as socio-economic status, smoking and gender
difference, led to similar values for the increased odds of
respiratory distress. In these cases, measurement error concerns
regarding proper correction for inaccurate or mis-measured
exposures are important issues, and a number of associated
statistical problems remain for further study; see Hasselblad, Eddy
and Kotchmar (1992).

A specific alternative for combined data analyses that may be
useful here involves Bayesian methods, where a prior probability
distribution is incorporated into the analysis to help account for
uncertainty in various unknown parameters (for a good introduction
to Bayesian methods, see Box and Tiao 1973). Specific restrictions
on these parameters can be incorporated into this hierarchy of
distributions, making the Bayesian approach quite flexible.
Combination of the prior distribution with the information in the
data leads to calculation of a posterior distribution for the
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unknown parameters, in which belief in the value of the parameters
is “updated” by the information in the data. Upper and lower
percentiles from these posterior distributions can serve as fairly
accurate confidence 1limits on the unknown parameters (e.g.,
confidence limits may be calculated for dose response parameters
that represent effects of environmental stimuli such as NO, or
other airborne toxins; see DuMouchel and Harris 1983). Applied to
the nine studies in the US EPA NO, analysis, hierarchical Bayes
computations similar to those performed by DuMouchel and Harris
(1983) show that five of the nine studies exhibit significant
increases in relative risk, yielding a pooled log-odds ratio with
pooling weights w; equal to the reciprocal posterior variances (see
above), of approximately 0.1567. The corresponding odds ratio of
e® % = 1.1697 mimics the US EPA estimate of combined risk to NO,
exposure.

Of course, a number of complementary statistical approaches
are also available for modeling parameter heterogeneity or
hierarchical effects, including weighted 1linear regressions
(Carroll and Ruppert 1988) that mimic the data combination effect
by viewing it as a heterogeneous variance setting, or random
effects models (Rubin 1992) that incorporate differential effects
of the data combination over multiple studies. Indeed,
hierarchical Bayes models are quite similar in nature to random
effects models for many common statistical models (see, e.g.,
Reinsel (1985), Schall (1991), and references therein).

3.3. DEVELOPING METHODOLOGY FOR ACUTE INHALATION ASSESSMENT

A third perspective on the need for new statistical
formulations for combining data is available by considering the US
EPA's more general development of methodology for acute inhalation
risk assessment. This project involves combination of data from
studies of inhalation damage from various airborne toxins in order
to estimate human health risk. The studies vary greatly in their
endpoints: short- and long-term exposures in laboratory animals,
acute exposures to humans in chemical and/or community accidents,
chronic exposure studies in urban areas, etc.

Current research in statistical combination of such data
focuses on analysis of categorical data. The research goal is to
develop methodology for data combination that incorporates the
range of endpoint severity, exposure concentrations, and exposure

durations. Particular emphasis is directed at acute exposures,
since these are thought to be more common than chronic, long-term
exposures in many human situations. The paradigm is based on

severity modeling, wherein concentration, duration, and response
are integrated to determine potential risks to humans after acute
inhalation exposure to some environmental toxin. The method groups
the response data into ranked severity categories, and assumes
that duration and concentration are independent explanatory
variables for predicting response. This is essentially an ordinal
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regression, using a logistic or another discrete-data regression
model for the concentration-duration-response (Greenland 1985; Tutz
1989). From the regression, one wishes to estimate the level at
which an exposed subject will respond with a small probability, say
10%. This is the 10% effective dose, or ED,,, for which a lower
bound is calculated, at, say, 95% confidence. For risk assessment,
this lower bound is then divided by an arbitrary “safety factor”
(Kaplan, Hoel, Portier and Hogan 1987; Johnson 1988). The
resulting value is instituted as a regulatory upper limit on acute
human inhalation exposure to the environmental stimulus.

Logistic regression models are useful for such constructions,
as described, for example, by Simpson, et al. (1994): as a first
approach, consider an ordinal regression model that accepts
censored data when animal or human subjects die prior to study
termination, models uncontrolled variables via random effects
terms, stratifies the analysis to examine systematic differences
across multiple studies, and combines the resulting information for
ED,, estimation. Notice in particular that the stratification and
random effects features provide familiar data analytic tools for
studying the potential bias incurred by modelling error.

Y;; denotes an ordered response in exposure group j for study
i (j=1,....,n;; i=1,....,M). If Y;; = 0 indicates no toxic
response, a logit-linear model is

1
[1+exp{-(0+p %, ,+Y z,;+b, u, }]

Prly,21|b,, X, Z;, u;l =

where x;; are study/exposure-specific concentration and duration
variables, z;; are study/exposure-specific covariates and/or stratum
indicators, and random effects are modelled via study/exposure-
specific controlled values in u,;; and via study-specific parameters

b;: b, ~ N(0, 6°I) . The simplest random effects case is where u;
= 1 for all j, and where b, ~ N(0, 6?) (i.e., a stratified, random
effects, ordinal logistic regression). If, for example, M = 1 and

x, denotes log,,(concentration), then ED,,, estimation is achieved
by solving g = Pr[Ylezﬁ, z] for x, after integrating out the

random effect (i.e., a marginal ED,y,), if necessary. Other
functional forms and constructions are possible, and further
development of these models is an important area of continuing
environmetric research.
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3.4. SYNTHESIS OF ENVIRONMENTAL STUDIES: LEAD ABATEMENT

There are, of course, settings where combining information may
still not achieve data synthesis, and where more data collection
and finer model determination is required to yield powerful
statistical inferences. An interesting example occurs with studies
of three U.S. cities' (Boston, Baltimore, and Cincinnati) attempts
to reduce childhood exposure to lead. The studies are focused on
intervention efforts to reduce lead exposure and presumed
consequent high blood lead levels in at-risk, inner-city children.

Individually, each city exhibited a different response to its
lead abatement efforts: Boston reported slight declines 1in
potential for environmental lead exposures, Baltimore reported no
significant impact, and Cincinnati reported mixed results. Could
data combination be used here to improve the sensitivity and power
of the statistical analyses?

To estimate changes in blood levels during the abatement
period, and to incorporate site differences encountered as each
city addressed and implemented its abatement strategy, city-
specific structural equations (Austin and Wolfle 1991) were
modelled to account for different lead pathways into the
bloodstream. These equations modelled multiple metabolic body
pathways and interactions, in an attempt to mimic the processes and
metabolic activities lead encounters as it passes through the body.
A meta-analysis then combined outcomes from hypothesis tests of
whether there was a significant reduction in post-abatement blood
lead levels based on the structural equations. Unfortunately, the
combined results suggested only minimal reduction in exterior lead
exposure and consequent lowering of blood lead levels. There was,
however, evidence that some relationship existed between exterior
and interior lead dust and blood lead levels, and that this
relationship--approximately a 1 png/dL drop in blood lead per 1000
ppm lead dust decrease--was essentially uniform across all three
study sites. This suggested that further efforts in lead abatement
may achieve significant reductions in blood lead levels, but that
the current data were unable to identify significant improvements
in lead abatement.

The data combination highlighted problems in meta-analyses of
this sort: unwelcome sensitivities to structural equation
specifications and difficulty in developing proper lead pathway
models were encountered, possibly due to unadjusted heterogeneity
in measurements of important predictor wvariables; the structural
equation models relied upon highly non-normal random variable
assumptions and statistical error structures that made analysis
difficult; and, multivariate analyses to account for repeated
measures on study subjects (Diggle and Donnelly 1989; Carr and Chi
1992) were necessary to adjust for seasonal cycles and long-term
time trends in Dblood lead concentrations. In effect, the
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complexity of the different models overwhelmed any gains in
sensitivity that data combination was able to provide.

4. OTHER APPLICATIONS
4.1 SITE CHARACTERIZATION

Meta-analytic methods such as the Fisher method (Sec. 3) have
been used to combine environmental information from samples taken
at different locations within a single site, such as a hazardous
waste site. Data collected at the individual locations is combined
to identify whether clean-up of the site has been successful, or if
more clean-up effort is required, etc. An extension of the Fisher
method is useful under conditions where the samples are of material
having multiple (and correlated) toxic features. For K = 2, this
involves computing the two-sample correlation coefficient R.
Comparison of R with a known reference distribution vyields a
corresponding p-value Pr- The test statistic

-2(1n(p,) + 1n(p,) + In(p;)) may be compared to a %® reference

distribution with 6 df, and vyields a test that, based on
simulations, is more powerful than the Fisher test with K = 2. See
Mathew, Sinha and Zhou (1993) for details.

4.2 BAYESIAN APPLICATION TO DOSE RESPONSE IN NON-CANCER TOXICITY

In other instances, such as when different studies provide
data on a non-cancer dose-response to an environmental stimulus in
different organisms, Bayesian methods can serve as useful vehicles
for data synthesis, via their ability to represent comparable
information on unknown parameters in posterior distributions. A
posterior distribution on, say, a toxicity dose-response parameter
in rats after exposure to a toxin can be compared directly with a
posterior on an ED,,, parameter for toxicity in human cells after
exposure to the same toxin, in order to estimate safe dose levels
for occupational or environmental exposure to the toxin.

Jarabek and Hasselblad (1991) provide an example of these
sorts of calculations for the airborne neurotoxin n-hexane. They
combine cross-sectional epidemiologic cohort study data (Sanagi et
al. 1980) with sub-chronic laboratory rodent toxicity data (Dunnick
et al. 1990), in similar fashion to other studies using both field
and laboratory data (Wolpert and Warren-Hicks 1992). As part of
their analysis, Jarabek and Hasselblad show that posterior
distributions for the concentration of the toxin that produce a
detrimental health effect (such as an ED,, for nasal issue damage)
could be combined into a single posterior distribution for a risk-
free concentration (RfC) exposure level, yielding an estimated RfC
of 0.2 mg/m®. Their use of a posterior distribution offers the
advantage of a visual display for the distribution of the RfC,
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along with incorporation of uncertainty and safety factors in
calculating the combined risk estimate. In general, posterior
distributions and associated hierarchical models (Morris and
Normand 1992) may be combined in fairly straightforward manners,
allowing for more flexible data synthesis, visualization, and
interpretation of toxic effects after environmental exposures
(Hasselblad 1994). Graphical displays of dose responses,
confidence limits, etc. are possible using these methods, providing
useful illustrations of statistical uncertainty, such as in an
estimated ED,,,, and its associated population risk estimates.

4.3 DATA REPORTING AND CONFORMANCE

Other important applications of statistical methodology in
environmental science include hazard identification and how one
reports statistical results from field studies. Combining
information from multiple field studies becomes especially
important when results from previous studies are employed to
determine if or how further study of an environmental hazard is to
be undertaken. Proper statistical reporting can obviate the need
for further studies, saving scientific and taxpayer resources for
other projects. In this area, different agencies, countries, etc.,
may have different definitions and ideals for similar data
structures. Data conformance, particularly at the international
level, becomes an important consideration. Development of such
conformance is now ongoing, with the goal of setting unambiguous
standards for naming, defining, and documenting data elements. To
date, however, the fundamental principles of international data
conformance are barely in place. Guidance is called for from
subject-matter scientists working in appropriate environmental
areas, especially regarding issues such as quality assurance to
check on protocol compliance, and to enhance basic data quality.

Similar issues are critical in statistical reporting of
environmental data, particularly when the data are combined. 1In
reporting combined environmental data, basic needs include emphasis
on standard forms for presenting and displaying data, and on
guidelines for recognizing and analyzing spatial effects and
identifying correct statistical features of spatial variability.
As above, further collaborative research is necessary to establish
unambiguous, easily-reported standards for these environmental
reporting issues.

5. COMBINING ENVIRONMENTAL INFORMATION: A RICH AREA OF
MULTI-DISCIPLINARY RESEARCH

This exposition has provided summaries and discussion of some
current examples and issues in combining environmental information,
and suggested potential research directions. Applications and
improvements in associated areas of statistical research include
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survey sampling, geostatistics, biological effect modeling, use of
hierarchical Bayes models, and statistical index theory.

There are two areas where new statistical theory will make
important contributions to ecological monitoring and assessment.
The first is that of combining NP-sample data with P-sample data
and other NP-sample data. P-sample based programs such as EMAP
provide a rigorous framework to study and assess ecological
resources, the value of which can be magnified enormously in the
presence of methods for combining P-sample based data such as EMAP
data with data from other sources. An important research question
is how to use NP-data to improve the efficiency of P-sample designs
and P-sample based estimation strategies. The need for these and
related methods extends to other environmental areas, such as
Superfund: for example, to design multi-stage samples for site
characterization and remediation (Englund and Heravi 1994), or to
draw combined inferences from preliminary (NP-sample) site
measurements and formal (P-sample) site clean-up monitoring data.
Similarly, new and extended results in spatial statistics,
particularly on multivariate and robust kriging, would have
immediate application to both ecological and compliance/remediation
monitoring problems.

The second ecological monitoring and assessment area is that
of developing environmental indicators and indexes that are
meaningful in terms of ecological and environmental science but are
rigorous statistically. The issues requiring attention here are
interdisciplinary and involve statistics. They include: defining
appropriate reference populations and systems, determining
appropriate units of measure, adjusting for local conditions such
as climate, avoiding spurious correlations caused by inappropriate
or over-aggregation, calibration/recalibration to monitor operating
characteristics of statistical measures, and developing and using
baseline data to benchmark indicators and indexes periodically.

In the areas of environmental epidemiology and biomedical
research, combining information has an important role to play in
terms of synthesizing disparate conclusions from studies of weak or
hard-to-identify effects. Particularly in cases where sample sizes
are too low to identify subtle or minimal effects, the application
of meta-analytic methods or other forms of combining information
can synthesize equivocal results, and lead to proper identification
of true environmental effects. Routine use by researchers of
methods to examine the sensitivity of meta-analyses to individual
studies (e.g., systematic removal of studies of concern, performing
meta-analyses on the reduced sets of studies, and comparing the
results) and the development of new sensitivity analysis techniques
for meta-analysis would be beneficial. In all these areas, more
research and investigation is necessary to recognize when, where,
and how information combination can improve upon standard and
perhaps outmoded forms of data analysis and scientific
interpretation of study results.
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