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  Abstract 

 
The singular value decomposition of a rectangular data matrix can be used to understand the 

structure of the data and give insight into the relationships of the row and column factors. For 
example, the rows linked to the rows might be experimental conditions of temperature and the 
experimental conditions linked to the columns might pressure. In a biological setting the rows 
might be linked to tissues and the columns linked to genes. In experimentation, there might be 
aberrant values, outliers, or missing values that arise from flaws in the execution of the experiment 
so there is a need for singular value decomposition of data tables with missing values and outliers. 
Our idea is to use a sequential estimation of the eigenvalues and left and right eigenvectors that 
ignores missing values and is resistant to outliers. The benefit of our robust SVD is that data tables 
with experimental flaws, outliers and missing data, can be examined more easily. 

 
Keywords: Singular value decomposition; Robust estimation; Alternating L1 regression; Outliers; 
Missing values; Biplot. 

 

 
1. Introduction 

 
The singular value decomposition (SVD) of a rectangular data matrix is a 

powerful tool in understanding its structure.  SVD underpins such methods as the 
biplot (Bradu and Gabriel 1978), correspondence analysis (Greenacre 1984) and 



                                             D. M. Hawkins, L. Liu, S. S. Young                                                                       2 

 

principal component analysis.  It is also sometimes used as a clustering method 
through the method of Q-mode analysis.  An exposition of some variants of its use 
is given in Greenacre and Underhill (1982).  

 
Let X be a matrix of order nxp.  It is generally helpful to think of its rows are 

representing n cases and its columns as representing p variables. Typically p is 
much smaller than n, and we will use this framework for discussion.  Note though 
that there is nothing to stop p exceeding n, as indeed is the case for a number of 
important problems in the analysis of microarray and chemometric problems.   

 
The SVD of the matrix is 
 TX = AΛB  

where A is the nxp column-orthogonal matrix of left eigenvectors; ΛΛΛΛ the pxp 
diagonal matrix of eigenvalues, and B the pxp orthogonal matrix of right 
eigenvectors.  Writing ai

  and bi for the ith left and right eigenvectors respectively, 
and λi for the ith eigenvalue, the SVD can be written 

 

    
1

p
T

i i i
i

λ
=

= ∑X a b  

 
It is well known that if the summation is truncated to just k terms, the right hand 

side is the least-squares rank k approximation to X  (see for example Greenacre 
and Undergill 1982).  

 
Conventionally, the SVD is calculated through a principal component analysis 

of XTX.  Since 
 
         T T T 2 TX X = BΛA AΛB = BΛ B  
 

this yields the right eigenvectors and the squares of the eigenvalues of X.  Then A 
can be calculated from 

   1−=A XBΛ  
 

If  n<p, then it is computationally faster to carry out a PCA on XXT; the 
calculations exactly parallel those sketched. 

 
2. Alternating least squares approach 

 
The conventional approach to the SVD requires that the matrix X be complete.  

If it has any missing elements, the calculation as sketched cannot be performed.  
An alternative iterative approach due to Gabriel and Zamir (1979) addresses this 
problem. 
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Its basis is that the leading eigen triple λ1, a1, b1 is the least squares 
approximation to X.  Their alternating least squares (ALS) algorithm works 
iteratively.  It starts with an initial estimate of a1.  Then estimates of the 
successive elements of b1 are found by regressing each column of X on a1 .  The 
resulting coefficients are estimates of λ1bj1.  At the end of the cycle, scaling the 
vector estimate to unit length gives the estimate of the b1, and the scale factor 
estimates   λ1.   

 
Having obtained the estimate of b1, the next step is to refine the estimate of a1.  

This is done by regressing each row of X on the estimated b1, and again 
normalizing the estimate. 

 
Since each step of the ALS reduces the residual sum of squares from that 

obtained at the preceding step, the process converges.  Gabriel and Zamir claimed 
that, part from recognizable degenerate solutions that can arise, the convergence is 
to the true leading eigenvalue / eigenvector triple.  

 
Once the first eigen solution has been obtained, we replace X by the deflated 

matrix 
 X - λ1a1b1 

and start the iteration anew to get the second eigen triple. 
 
This ALS approach is stable and easy to program.  While it is not particularly 

fast, it can be computationally attractive if both n and p are large, but only a few 
eigen solutions are needed. 

 
3. The effect of outliers on the SVD and robust approaches 

 
As the SVD is a least squares procedure, it is highly susceptible to outliers.  In 

the extreme case, an individual cell, if sufficiently outlying, can draw even the 
leading principal component toward itself.  It is therefore desirable to have some 
way of computing a robust SVD. 

 
One obvious approach is through a robust principal component analysis.  Instead 

of diagonalizing XTX, use some resistant scatter matrix such as the minimum 
covariance determinant (MCD, Rousseeuw 1984, Hawkins and Olive 1999, 
Rousseeuw and Van Driessen 1999).  This method though is not well suited to the 
problem or making the SVD resistant to a minority of outlying cells.  Resistant 
scatter matrices are based on the premise of a data matrix, most of whose entire 
row vectors are ‘clean’, with a minority of arbitrary outlier vectors.  But there are 
many applications in which the outliers are individual cells in otherwise-good 
rows.  Consider for example a data matrix with 100 rows and 2000 columns, such 
as is commonly seen in microarray settings. Suppose that 2% of the cells are 
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outlying, and that the outliers are located at random.  Then in expectation only 
13% of the rows will be outlier-free; far below the majority required for resistant 
covariance matrix approaches to succeed.  

 
Galpin and Hawkins (1987) and Choulakian (2001) give another approach based 

on the variational properties of principal components. Classical PCA maximizes 
(minimizes) the variance of the linear combination of the variables subject to 
orthogonality with the preceding (succeeding) components, while this method 
replaces the objective function of variance with sum of absolute deviations and 
leads to linear or quadratic programming formulations for each eigenvalue and 
right eigenvector pair.  The Galpin-Hawkins approach does not directly address 
the question of finding the left eigenvectors. 

  
To solve the problem of modeling rectangular data arrays with a minority of 

outlier cells, we propose a robust method we call AL1-SVD, for alternating L1 
Regression for SVD.  It has a similar flavor to the Gabriel-Zamir ALS approach 
and, like that approach, can accommodate missing values in the data matrix.  It 
differs from ALS in using a more resistant measure than least squares. 

 
4. The alternating L1 regression algorithm 

 
The leading eigenvalue and eigenvector pair has the property of minimizing the 

Euclidean norm of the unexplained portion of the data matrix.  We will replace 
this by the criterion of minimizing the L1 norm – the sum of absolute values – of 
the unexplained portion of the data matrix, and implement it by alternating L1 
(AL1) regressions. 

 
Algorithm 
• Start with an initial estimate of the leading left eigenvector a1 
• For each column j, j = 1, 2, …, p, fit the L1 regression coefficient cj by 

 1
1

min | |
n

ij j i
i

x c a
=

−∑  

• Calculate the resulting estimate of the right eigenvector b1 = c / ||c||, where 
||.|| refers to Euclidean norm. 

• Using this estimate of the right eigenvector, refine the estimate of the left 
eigenvector.  For each row i, i=1, 2, …, n, fit the L1 regression coefficient di by 

1
1

min | |
p

ij i j
j

x d b
=

−∑  

• Calculate the resulting estimate of the left eigenvector a1  = d / ||d||. 
• Iterate to convergence. 
 
The L1 regressions involved are trivial, reducing to finding weighted medians. 
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 1
1

min | |
n

ij j i
i

x c a
=

−∑   =  1 1
1

min | | . | / |
n

j ij j j
i

a x a c
=

−∑  

which is solved by the weighted median of the ratios xij/a1j with weights |a1j|.   If 
a1j=0, then the term can be ignored as it does not contribute to the weight.  
Missing cells are omitted from the calculation of the median.   

 
There is no very obvious choice of a starting estimate of the leading left 

eigenvector.  One reasonable choice is to use the vector of median absolute values 
of the rows, rescaled to unit length. 

 
Note that convergence of a sort is guaranteed in that each step of the AL1 

reduces the fit criterion.  However it is not automatic that the eigenvectors will 
converge to fixed values.  The median of a set of values is not always unique (and 
this is also true of the weighted median), so care must be taken if you want to 
ensure a unique solution for the eigenvectors.  The most transparent solution is to 
use for the weighted median the center of whatever range of values might be 
found to minimize the criterion.  Since the criterion is convex, there will be at 
most one such range. 

 
This alternation gives the first eigenvector pair.  Once the criterion value has 

stabilized, the L1 eigenvalue is found through the minimization 

 1 1 1
1 1

min | |
pn

ij i j
i j

x a bλ
= =

−∑∑  

This is another single-parameter L1 regression, and is given by a weighted 
median. 

 
For the second and subsequent of the SVD, we replace X by a deflated matrix 

obtained by subtracting the most recently found term in the SVD 
 T

k k kλ← −X X a b  
 

5. Comparison with the conventional L2 SVD 
 

  Two differences from the usual SVD may be noted.  One relates to 
orthogonality.  In the conventional SVD, all the eigenvectors are orthogonal even 
if not explicitly imposed. In complete data problems, the vectors returned by the 
ALS algorithm will be orthogonal.  Those returned by the AL1 algorithm are, in 
general, not orthogonal. 

 
Another difference is that, in the L2 analysis of the conventional SVD, the 

successive eigen triples are found in descending order of eigenvalue.  This is not 
necessarily the case with the AL1 algorithm; it is our common experience that a 
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term with larger λ may follow one with smaller, something that the ‘power’ 
property of the L2 SVD precludes. 

 
6. Examples 

 
The SVD has many uses; for our examples we will use one of them – using the 

SVD to construct a biplot to gain an understanding of the additivity or otherwise 
of an unreplicated two-way anova layout. 

 
6.1 Simulation  

 
As explained by Bradu and Gabriel (1978), to construct a biplot we take a rank-2 

approximation to the unreplicated two-way layout X 
 
 TLR≈X  
 

where L and R are the first two left and right eigenvectors of X rescaled by 
apportioning the first two eigenvalues between them.  Then using G as bivariate 
coordinates allows us to plot a representation of the rows – this set of points is 
termed the ‘row markers’.  The column markers are similarly defined.  An 
additive model for X can be inferred if the row and column markers are both 
straight lines, and lie at right angles.  If they are lines but at an angle other than 
90o, the diagnosis is of the Tukey ‘one degree of freedom’ model.  A line for the 
row markers but not the column markers shows that there is a row regression 
model (Mandel 1969).  The same interpretation frame applied to subsets of the 
markers can identify submatrices that satisfy particular simple models. 

 
To illustrate biplotting with outlier-contaminated data, we generated a 10*10 

additive data matrix xij = µ+αi+βj+e, where µ = 1,  α  = -5,-4,…, 4, 5,  β= -5, -4, 
…, 4, 5 and the random noise term  e is N(0,0.125). This data matrix is of 
approximate rank two after the overall mean is removed.  

 
To obtain L and R for the generated data matrix, we use both regular SVD and 

robust SVD. The biplots of the data matrix are shown in Figure 1 and Figure 2. 
Notice that in both biplots, the row markers form a straight line, the column 
markers form a straight line and they are at a right angle to each other. This 
correctly diagnoses an additive model for the table. 

 
Now we contaminate the data by adding four outliers (add 15 to four randomly 

chosen cells in the data table). The regular SVD and robust SVD are performed 
again on the data matrix with outliers to get L and R. The new biplots are shown 
in Figure 3 and Figure 4. As we can see, we do not get straight lines from the 
biplot based on the regular SVD. The markers are scattered around and have no 
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visible simple structure.  In contrast, the biplot based on the robust SVD is almost 
the same as before. Two straight lines are at a right angle, which indicates an 
additive model. This illustrates the advantage of the robust SVD, whose analysis 
is not or is less influenced by the outliers. 

 
6.2 Rubber data 

 
 This is the data on specific volume of rubber, which is analyzed by Bradu and 

Gabriel (1978), see Table 1. There are three factors, which are treatment of rubber 
(2 levels), temperature (4 levels) and pressure (6 levels), so it is a three way table. 
The data is not complete in that the 500 kg/cm2 observations for the unvulcanized 
rubber at 0o centigrade is missing. 

 
To illustrate the data with biplot, we consider two way table by combining 

temperature and treatment as rows. The two factors will be separated later. 
 
We perform robust SVD on this dataset since the method can handle missing 

values. The rank two approximation gives a goodness of fit of R2 = 99.995%, and 
the missing value is estimated to be 172.762 (as compared to Mandel’s estimate of 
173, and Bradu and Gabriel’s estimate of 173.578).  

 
The biplot of this rank two approximation is shown in Figure 5. As we can see, 

all the column markers (pressure levels) form a straight line, while all the row 
markers roughly form a line which is almost perpendicular to the line of column 
markers. This indicates an additive model will be relatively good. 

 
On closer inspection, we see that the row markers divide naturally into two 

groups, each of which is very close to linear.  These two groups turn out to 
correspond to the treatments (peroxide cured or unvulcanized). The two treatment 
lines are parallel and almost at the right angles to the line of column markers.  
This verifies that there is a small treatment difference and a large temperature 
effect, and that the model is close to additive in pressure and the Kronecker 
product of temperature and treatment. 

 
This conclusion is consistent with that of Bradu and Gabriel (1978). Now let us 

contaminate the data with a couple of outliers, and see what happens. Figure 6 
shows the biplot based on the approximation by the robust SVD. Not surprisingly, 
the result is similar to that without outliers.  However, the biplot based on the 
regular SVD is not satisfactory, see Figure 7.  The markers are no longer straight 
lines and seem to have no simple pattern to them.  The outliers therefore have 
ruined the conventional L2-norm SVD, but have had no substantive impact on the 
AL1 SVD. 

 
7. Conclusion 
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The SVD is a tool with many uses.  Our two examples have illustrated the 

biplot, which is interesting as a method that uses the SVD directly to infer data 
structure, but Q-mode clustering, principal component analysis, and 
correspondence analysis also rely on it.   

 
As a least squares method though, the SVD is non-robust, being highly sensitive 

to even modest numbers of outliers in the data array.  Our alternating L1-norm 
approach leads to an outlier-resistant approach that also accommodates missing 
information.   The latter alone is enough to make it attractive compared to other 
high breakdown methods that require complete data, but even more compelling is 
that is well suited to the types of outlier commonly seen in rectangular data arrays 
– that is outliers affecting isolated cells rather than entire rows or columns. 

 
It is simple to implement, and while not particularly fast, executes quickly 

enough not to create an obstacle to its wider use. 
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Fig. 1.  Biplot based on the regular SVD without outliers.                    Fig. 2. Biplot based on the robust SVD without outliers. 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Biplot based on the regular SVD with outliers.                               Fig. 4. Biplot based on the robust SVD with outliers. 
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Fig. 5. The biplot of the rubber data based on the robust SVD. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. The biplot of the rubber data with outliers                      Fig. 7. The biplot of the rubber data with outliers          

     based on the robust SVD.                                                                 based on the regular SVD. 
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Table 1 
Specific volumes of two rubbers 

 
Rubber 

  
Temp (oC)  

                     Pressure ( kg/cm2 ) 
      500     400     300    200     100       0 

Peroxide      
Cured       

0 
10 
20 
25 

      137     178     219    263     307    357 
      197     239     282    328     376    427 
      256     301     346    394     444    498 
      286     330     377    426     477    532 

Unvul-         
Canized       

0 
20 
25 

       54       93      136    179     225    272 
        ?       218     264    314     364    417 
      202    248      295    345     396    451 

*   To see the effect of the outliers, we replace 346 by 293 (peroxide cured, 20 oC, 300 kg/cm2),   
      and 272 by 263 (unvulcanized, 0oC, 0 kg/cm2).  
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