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Abstract

Loggerhead turtle populations have been on the decline in recent years throughout
much of their range, partially as a result of mortality in shrimp trawling nets. To curtail
this decline, regulations have been enacted that require the use of devices that allow turtles
to escape unharmed from the trawl nets. These devices are known as turtle excluder devices
or TEDs. Little data have been published that demonstrate the effectiveness of TEDs in
enhancing turtle populations. In this report, loggerhead turtle strandings (i.c. dead turtles
that wash ashore) from South Carolina are examined for possible relationships to the use of
these devices. A linear statistical model is proposed that includes components representing
aspects of the observed South Carolina strandings record, and allows the inclusion of a
TED parameter. We fit this model by ordinary least squares, but the residuals from this
model were found to be both autocorrelated and heteroscedastic. Fitting a regression
model with a time-series error structure using the natural log transformed (strandings +
1) provided a very good statistical fit to the data. But interpretation of the parameters is
not straight forward on the log scale. We used several methods to enable interpretation
on the original scale. First, we interpreted the parameter estimates based on the log
transformation approximately as percentage changes. Second, we used an approximation
based on a Taylor series expansion to back-transform the parameters of the log transformed
model to the original scale. Finally, the model was fit using ordinary least squares and the
standard errors adjusted for serial correlation and heteroscedastic variance. These various
methods each have their drawbacks which are discussed. The TED effect is estimated to
be -16 turtles/bi-weekly period based on the log-strandings analysis, indicating that TEDs
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reduce strandings. This is roughly a 44 percent decline in strandings as a result of TED
use, and was highly significant. The estimated trend in strandings is found to closely
mimic what is believed to be occurring in the SC loggerhead population based on aerial
surveys. Finally, we are able to detect spring and fall peaks in strandings in addition to that
occurring in the summer months. Future analyses pertaining to these data are suggested.
Keywords: Loggerhead turtles, turtle-excluder devices, TEDs, shrimp fishery.
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1 Introduction

Most populations of sea turtles have been declining in recent years, particularly those of
loggerheads in the southeastern United States (National Research Council (1990, Chapter 2)).
Because of this, in 1978 loggerheads were listed as a threatened species under the Endangered
Species Act. Death of turtles in shrimper’s nets is the most important human associated cause
of adult and sub-adult turtle mortality (National Research Council (1990, Chapter 6)). This
would seem to imply that reducing the mortality associated with the shrimp fishery would have
a large effect on the recovery of loggerhead populations. Because of the mortality associated
with shrimping, and the listing of the loggerhead as threatened, regulations requiring the use
of turtle excluder devices (TEDs) in shrimp nets have been enacted. Throughout the 1980s the
National Marine Fisheries Service (NMFS) tested various TED designs, and South Carolina
became the first state to require TED use in shrimp trawls in 1988. Crowder, Crouse, Heppell
and Martin (1994) have modified the stage-based population model for loggerhead sea turtles
of Crouse, Crowder and Caswell (1987) and use it to project potential population level effects
from the use of turtle excluder devices (TEDs) in the shrimp fisheries of the southeastern U.S..
Based on their model, a 20 percent decline in mortality associated with TED use will maintain
the loggerhead population at it’s current levels.

The purpose of these analyses is to attempt to construct a statistical model of turtle strand-
ings (i.e. dead turtles that wash ashore mostly associated with trawling activity) based on
characteristics evident in the data. This model will incorporate a parameter to account for a
possible effect on turtle strandings of turtle excluder device use in shrimp nets. We can then
estimate this parameter, the TED effect adjusted for other effects such as trend and season-
ality. And by accounting for the variability in strandings, we can test the relevant statistical
hypothesis of the true parameter being such that the effect of TED use reduces turtle strandings.
We assume strandings to be indicative primarily of turtle mortality associated with shrimping
activity National Research Council (1990). Therefore a decrease in strandings would suggest
a decrease in shrimp fishery-related turtle mortality.

As George Box once said “All models are wrong, but some are useful.” We hope that
we can provide a model that is useful in that it will provide some insight into the effects of
shrimping and TED use on turtle strandings. This insight can then be used to predict the impact
of TED use on loggerhead population levels as in Crowder et al. (1994).

2 Description of Data

2.1 Strandings data

The strandings data consist of bi-weekly counts of loggerhead turtle carcasses washed ashore
(i.e. turtle strandings) on South Carolina beaches between April 1 and November 30 each year
from 1980 through 1993. The bi-weekly counts are given in Table 1, for periods beginning on
the 1s¢z and 16tk of each month. These data were provided to us by Sally Hopkins-Murphy of
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the SC Wildlife and Marine Resources Department. To achieve these counts, South Carolina
beaches were monitored on the ground or by aerial survey as part of the Sea Turtle Stranding and
Salvage Network (STSSN) which was established to collect data on stranded turtles. Reports of
dead turtles from the public were referred to a network member assigned that particular beach.
Standardized data forms were developed and used by all members of the network. Data on
strandings were sent by those surveying the beaches to a state coordinator where the forms were
checked for errors or omissions. Each state coordinator then sent copies of the data forms to
the Southeast Fisheries Center of NMFS in Miami, Florida to be archived and summarized for
quarterly, semiannual and yearly reports of the STSSN. Measurements were standardized, and
steps were taken to assure that carcasses were not counted twice. Approximately 50 percent of
the 35 beaches and islands in South Carolina were surveyed in 1980, as the network was being
established, and approximately 90 percent were surveyed in subsequent years.
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Itis not known what proportion of turtles killed wash up on the shore, but it seems reasonable
to assume that this number is proportional to the total number killed. The observed strandings
are plotted in Figure 1. We are treating this record as an unbroken record across years, although
data are missing from December through the end of March every year. The number of strandings
during these times is zero in almost all periods and including these periods would serve no
obvious purpose. As aresult of this, the models constructed in following sections apply to only
those periods from which data are included.

2.2 Shrimping Season and the TED Regulation

Table 2 shows the yearly dates that the shrimp season started. Although the shrimp season
runs through December and sometimes into January, we took the last day of the season to be
October 30tk in all years. After this date there is generally very little shrimping done (< 15
percent of annual effort per month) (see Table 3), and most turtles have migrated further south
(see Section 3.2), thus are not present to be affected by shrimping activity in any great numbers.
It makes some sense to categorize periods of low shrimping effort as off-season since turtle
mortality in these periods would be most like that of the off-season. Ideally, we would define a
turtle mortality-influencing shrimp season as being that part of the legal shrimp season where
shrimping is having a significant mortality effect on turtles, and there are turtles present in large
enough numbers to show up as strandings. But the seasonality of turtle abundance (Section 3.2)
is not well-known, so we could only come up with a subjective definition of this with respect
to turtle abundance.

Table 2 also gives the dates that the TED regulation was in effect each year. In years
where the TED regulation ran over the boundaries of the bi-weekly periods that the strandings
data exist, we counted the TED regulation to be in effect only during those periods in which
a minimum of 5 days were covered by the regulation. If a TED effect exists, we feel this to
be a reasonably long period of TED use in which to have an effect on turtle strandings in that
period. Because the strandings data only exist as bi-weekly counts and the TED regulation was
implemented in periods that don’t necessarily coincide with these survey periods, there will be
some periods that had TEDs in effect only part of the time. Thus the period may be designated
as a TED period when really TEDs were in affect only part of the time and vice versa. This
will cause the number of strandings associated with TED use to be smaller than it actually is,
or cause the number of strandings associated with shrimping during non-TED periods to be
smaller than it actually is. This may cause some bias in the estimate of the TED effect and
of other model parameters. Because this only occurred two years (1988 and 1989), this bias
should not be large.

The shrimp season too, generally does not coincide with the boundaries of the two week
periods in which strandings counts were made. Again, if shrimping occurred in at least 5 days
of a given period, we included that period as a shrimping period. The same problem discussed
above exists here, except that this is liable to increase the number of strandings associated with
non-shrimping activity, or reduce the number of strandings associated with shrimping activity.
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Figure 1: Bi-weekly loggerhead strandings.
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Table 2: Beginning of shrimp season and effective dates of TED regulation.

Year Shrimp season begins

TED regulation dates

1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993

June 10
May 15
- May 17
May 16
June 15
June 25
June 18
June 4
June 28
June 1
June 1
May 15
May 20
June 1

none
none
none
none
none
none
none
none
June 28 - July 10, July 25 - Aug 11
July 1 - Aug 31
June 1 - Aug 31
May 15 - Oct 31
May 20 - Oct 31
June 1 - Oct 31
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The bias caused by these two problems, that of the TED regulation not coinciding with
bi-weekly period boundaries and the shrimp season not coinciding with bi-weekly period
boundaries, is against a TED effect, thus we may be getting a conservative estimate of the TED
effect based on these issues.

2.3 Shrimping Effort Data

Since the shrimp fishery is a significant mortality factor for sea turtles, one would expect
strandings to be related in some way to the shrimp season. It seems reasonable that this rela-
tionship would be proportional to shrimping effort, although this is not a standard catch/effort
relationship as turtle mortality is affected by other sources, both human induced and natural.
Among these may be other seasonal fisheries, of which no effort data are readily available.

We have available the monthly total days spent shrimping for the region between 32 degrees
N and 34 degrees N latitude, which covers the entire coast of South Carolina. These data are
broken down by coastal zone, defined as distance from the shore. These zones are inshore,
which includes sounds, bays and estuaries, 0 — 3 miles from shore, 3 — 12 miles from shore,
and > 12 miles from shore. The great majority of shrimping effort was conducted in the 0 — 3
mile zone. The monthly distribution of total days of shrimping effort in the 0 — 3 mile offshore
zone is given in Table 3. Generally, June through October are heavy shrimping months. Except
for 1986-1989, little effort occurred in November and December and in 1984 and 1990 little
effort occurred after August.

The effort data cover the period 1980-1990, whereas the strandings data are through 1993.
Since the effort data covering 1991 to 1993 is unavailable to us at this time, relationships
between strandings and effort will be the focus of future work. Preliminary work was done
(but not discussed here) by including effort into a regression model using strandings from 1980
to 1990. This indicated that effort is not an important variable given that shrimp season was in
progress.

3 Changes in Turtle Abundance

If strandings are proportional to turtle abundance, then it is reasonable to expect that the
abundance of turtles would show up in the strandings record in the form of more strandings
corresponding to high populations and vice versa. Changes in turtle abundance can be both
seasonal, reflecting inter-year migrational activity and mortality of turtles, or long-term repre-
senting intra-year changes in regional turtle abundance. We will refer to the later type of fluctu-
ation as long-term trend or simply trend. The former will be referred to as seasonal abundance.
This section briefly mentions what is known concerning both types of population changes.
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Table 3: Monthly distribution of days of shrimping effort in the 0-3 mile offshore zone.

Year Jan Feb Mar Air May Bun Jug Aug Pep Oct Nov Dec

1980 12 0.1 0 00 05 105 200 206 153 184 86 4.7
1981 03 0.0 0 00 01 36 291 247 179 149 6.1 3.1
1982 03 0.0 0 00 16 103 216 149 197 168 83 6.6
1983 22 03 0 00 36 82 205 182 212 127 7.6 5.5
1984 03 0.0 0 00 00 241 311 215 70 83 63 14
1985 02 0.0 0 00 00 55 305 208 141 103 59 36
1986 0.7 0.0 0 01 02 81 187 138 184 192 137 172
1987 2.8 0.0 0 00 05 99 155 110 214 193 116 8.0
1988 24 0.0 0 00 00 15 173 175 200 171 118 123
1989 0.8 0.0 0 01 10 140 163 139 159 141 133 10.6
1990 0.0 0.0 0 05 05 362 352 137 39 49 29 20
Average 1.0 00 0 01 07 120 233 181 159 142 87 59

3.1 Long-term Trend of Turtle Populations

As stated above, loggerhead populations have been on the decline in recent years. Over a 5
year monitoring period in the 1980s, Hopkins-Murphy and Murphy (1988) observed a decline
of more than 26 percent in aerial surveys of nesting loggerheads in South Carolina. It was this
information that first led to the implementation of the TED regulation in South Carolina. This
decline is typically stated as a percent per year implying that the trend is thought to be, or is
at least treated as a linear trend. Hopkins-Murphy (1994), in an update of the aerial survey
data, has observed a leveling off in nesting turtle numbers in recent years, and even a slight
increase. This is also evidenced in the data of Table 1; thus it seems that the trend in strandings
and nesting loggerheads at least superficially resemble one another.

3.2 The Seasonal Abundance of Turtles

Sea turtles are not present in the waters off South Carolina in constant numbers year round.
Their migrational patterns are likely to be water temperature dependent since VanDolah and
Maier (1993) found no turtles present in waters below 16 degrees C. Data on the seasonal
distribution of turtles along the Eastern United States is scarce, but aerial surveys show that
turtles migrate into the waters of the study area every year in the early summer, and reach a peak
abundance in May or June, declining in the summer as turtles move northward with warming
water temperatures. This reduces the local populations in the summer, but the population
increases significantly in the fall again as turtles begin to move south as northern waters cool.
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They reach their lowest local seasonal density in the winter as they’ve migrated even further
south. Table 4 shows the estimated density of turtles/10,000 km?, based on aerial surveys for
the latitudes between 32 degrees N and 34 degrees N. These data were taken from appendix D of
National Research Council (1990). Thus, turtles off of South Carolina reach a peak abundance
in the spring and the fall of every year, which should be reflected in the strandings record
as high strandings in both of these periods, assuming that there is some relationship between
background populations of turtles and strandings. Perhaps what is important in characterizing
the seasonal relationship between turtle abundance and strandings is the population of resident
turtles. That is, the population of turtles that spend their summer months in the waters off the
South Carolina coast and do not migrate further north. This population may be quite large as
a percentage of the overall population of turtles that come north in the spring, since few turtles
are found to nest further north than North Carolina.

4 Preliminary Analyses and Observations

Figure 2 shows a plot of shrimping effort with strandings. Effort has been scaled to allow easy
comparison with strandings. Several features are evident from studying Figure 1, and Figure 2.
These will be discussed here.

4.1 The Shrimping Season, Shrimping Effort and Turtle Strandings.

In all years, the largest numbers of strandings occurs in the few periods immediately following
the beginning of shrimp season.

Figure 2 shows a very large increase in turtle strandings associated with a very large increase
in shrimping effort, signaling the beginning of the shrimp season. The effort remains high for
as long as 5 or 6 months each year, while strandings decrease substantially. This combined
with the fact that in the spring and fall periods of some years, strandings are high but effort is

Table 4: The seasonal abundance of turtles off South Carolina, estimated density/10,000 square
km.

Season 32-33 degrees N 33-34 degrees N Total

Winter 1244 390 1634
Spring 891 2502 3393
Summer 475 1491 1966

Fall 545 2426 2971
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not, would seem to indicate that effort will not help predict strandings. The onset of shrimping
is the most important aspect of shrimping activity. Further, the decline in strandings through
the season may be due to a quick depletion of turtles on the quality shrimping grounds. At the
onset of shrimping, turtles in these areas are killed in large numbers, leaving few to be killed
later in the season. Strandings later in the season may be due to other turtles moving into the
quality shrimping grounds, or shrimpers moving to shrimp in other areas.

4.2 Periodicity in the Strandings Record

Figure 1 shows a dramatic increase in strandings in the early summer of every year, followed
by a decline through the summer months to almost nothing in the fall. Can this be modeled
as a smooth function such as a cosine wave, as might occur if this were related to seasonal
turtle abundance? Or is this simply a step-function increase related to the onset of the shrimp
season? From Section 3.2, based on turtle abundance alone, we would expect to see two
peaks in strandings each year. However, this is not the case. Rather, we see the initial peak
in the late spring or early summer corresponding to the onset of shrimping, but nothing of a
comparable magnitude in the fall, even though in most years shrimping is largely continuing on
the same scale as in the beginning of the season. This suggests that the early summer increase
in strandings is largely due to shrimping effort, rather than the seasonality of turtle abundance.
The subsequent decline in strandings is consistent with both seasonal abundance patterns and
mortality. Thus it is likely that a seasonal effect exists, on top of the shrimping effect. The
occasional fall increases in strandings may be due to the influx of northern turtles migrating
south, coupled with continuing heavy shrimping pressure.

Spring and fall increases in strandings appear in some years as shown in Figure 1. Aside
from migrational activity of turtles, the fall increase may be due to other seasonal fisheries.
A flounder fishery operates in the late fall of every year, although this fishery tends to occur
further north and may not affect turtle populations off the South Carolina coast significantly.
The spring component prominent in 1980-1986 coincides with a sturgeon gill net fishery that
existed at this time, although generally this was earlier in the season, before turtles are present
in large numbers.

4.3 Observed Trend

An important question to biologists is, does a trend exist in the turtle population? If so, then
we might expect to see this trend in the strandings record. Figure 1 shows a definite decline
in the numbers of strandings from the early eighties to the end of the record. As a rough
estimate of the trend in strandings, Figure 3 shows the yearly means of loggerhead strandings
per period. It appears that the decline from 1980 through 1993 is not a linear trend, and perhaps
quadratic. Given that the means from the early years will be highly influenced by the few very
large numbers of strandings that occurred then, this plot will possibly reveal a larger trend than
actually exists. We can make a similar plot, using a more robust method known as median
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polish, to get estimates of the yearly average strandings per period. We used a median polish
(Tukey (1977)) on the year by period matrix of strandings to estimate the yearly effects and the
period effects. This allows us to get estimates of the yearly effects free of period effects which
include seasonality and shrimping effects. Thus we hopefully get a more reasonable estimate
of the trend across years. The yearly effects are robust estimates of the yearly means and
similar to the yearly median strandings per period. Either interpretation will suffice. A similar
interpretation can be made for the period effects. Figure 4 shows a plot of the yearly effects.
Notice that the general form of the trend is similar, although the yearly effects of the years with
unusually large number of strandings (1980 and 1987), are relatively much smaller than the
means. The overall level of the yearly effects is smaller than that of the yearly means, due to
the fact that the period effects are removed and the larger values do not weigh as heavily in
these calculations. It appears that a quadratic trend term may adequately describe the long-term
trend of turtle strandings. This is consistent with the observation of Hopkins-Murphy (1994).

This observed decline in strandings may be due to two factors. As mentioned, a decline
in turtle populations is one factor. A decline in shrimping activity may also affect strandings.
Figure 5 shows the yearly total number of days spent shrimping in the study area between the
beginning of the shrimp season and the end of December. The horizontal line is the mean yearly
effort over the 13 year period. There is no significant trend observed here comparable to that
of Figure 3 or Figure 4. We can likely conclude from this that the observed trend in strandings
is primarily due to a declining turtle population.

4.4 A Naive Estimate of the TED Effect

The most important issue and the main focus of this analysis is whether TEDs have an impact
on strandings. More specifically, do they decrease turtle mortality as they are meant to? And
if so, what is the magnitude of this decrease? If TEDs reduce mortality then we would expect
to see a decrease in turtle strandings during the periods when TEDs are in use. Figure 1 clearly
shows that strandings decline after the implementation of TEDs. In fact, every year before
TED implementation except 1985 has more strandings than in any of the TED years. The four
years with full TED use required have lower strandings than any other years. Of course, the
TED effect is confounded in some way with the suspected downward trend in turtle numbers.
Thus we need to model both effects, which is done in Section 6.1.

An obvious initial estimate of the effect of TEDs on turtle strandings is simply the mean or
median number of strandings in periods when TEDs were in effect minus the mean or median
number of strandings in periods when TEDs were not in effect. A negative value of this quantity
would indicate that TEDs reduce strandings by that amount each period, on average. Since
there were many more strandings early in the study which may be due to larger populations or
other factors, we could make this more reasonable by restricting our estimate to later years, say
1984-1993.

For the years 1980 to 1993, the mean number of strandings per bi-weekly period when
TEDs were not in effect was 19.78. The mean when TEDs were in effect was 6.84. Thus
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Figure 5: Total days spent shrimping through December of each year.

our naive estimate of the TED effect is ~ —13 turtles per period, or a decline of 65 percent.
Restricting ourselves to the years 1984 to 1993 so that we have 4 no TED years, 4 full TED
years, and 2 partial TED years, we get a mean of 13.40 with no TEDs and 6.84 with TEDs.
This is approximately a 49 percent decline in strandings per period.

Performing these same calculations using the median strandings per period we get, for 1980
to 1993, a median of 11.5 with no TEDs and a median of 5 with TEDs, which is a decline of
~ 57 percent. Again, restricting our estimate to the years 1984 to 1993 we get a median of 7
with no TEDs and a median of 5 with TEDs, which is a 29 percent decline. The use of medians
gives us an estimate that is more robust to (that is, not as affected by) extreme values, which in
particular are the high strandings of 1980, 1981 and 1987.

Although these estimates of the TED effect are confounded with the negative trend in
strandings, these do provide some indication that there is a TED effect. We shall compare these
naive estimates of the TED effect to those calculated when we adjust strandings for seasonality
and trend in Section 6.1.

5 A General Model

Given the observations of Sections 3 and 4 we might propose a model that has the general form

strandings = (background mean) + (periodic components)
+ (long-term trend) + (TED effect) (1)
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In this equation the background mean reflects the number of strandings that might occur as
a result of mortality on a constant turtle population. That is, one with no seasonality, trend
or TED effect. Periodic components may be one or more cyclical components to account for
the observed annual or semi-annual cycles of some years. This may include both the seasonal
abundance of turtles, or other seasonal effects including seasonal fisheries. The long-term trend
will be some function that captures the observed trend in strandings, likely related to the
underlying trend in the turtle population. And the TED effect will be an indicator of when the
TED regulation was in effect, thus serving as an adjustment to the background mean during
these periods. This section discusses how we may build a parametric model to the strandings
data.

5.1 Background Mean

The mortality of turtles is plainly different during the shrimping season than otherwise. Atissue
here then is, how does one parameterize the effect of shrimping on turtle strandings? A logical
parameterization is to simply allow the mean strandings to be different in these two periods. In
its simplest form, this model contains only a constant and a parameter to represent the effect of
the shrimping season, and is of the form: Strandings; = p + BX; where X, is an indicator
of shrimp season. That is, it takes on a value of 1 when shrimping season is in progress, and a
value of 0 otherwise. This is saying that strandings are just a constant, plus some effect due to
shrimping activity. When shrimping season is not in effect, the mean strandings is expected to
be u, and when shrimping season is in progress, the mean strandings is expected to be ;1 + 3. The
parameter 3 will have the interpretation as an addition or subtraction from the mean, depending
on whether it is negative (shrimping season reduces strandings) or positive (shrimping season
increases strandings). An equivalent model would allow for an off-season mean and a separate
on-season mean. This model can be represented as Strandings; = f1 X1t + $2X2:. Here Xy,
is an indicator of off-season, X5; is an indicator of shrimp season, f is the expected off-season
mean strandings and £, is the expected mean strandings during the shrimp season. The formal
definition of X, is as follows

X, = 1 if period t was on-season
= 0 if period t was off-season

The variable X3, is defined similarly as

X, = 0 if period t was on-season
2271 1 if period t was off-season

In the presence of other effects discussed in the following sections, these will have the interpre-
tation as the mean strandings adjusted for these other effects. This parameterization is straight
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forward and easy to interpret. Thus we will use it in our basic model (Section 6.1). It may be
possible that the effect of a given amount of effort is not the same later in the shrimp season.
This difference may exist as a result of the seasonal abundance of turtles, and also mortality of
resident turtles.

5.2 Long-term Trend in Turtle Abundance

From the discussion of Section 4.3 it seems that a low order polynomial will reasonably
approximate the observed long-term trend in strandings evident in Figure 1 and Figure 4. That
is, we can add a term of the form (6 x time) to the model in the previous section in the case of
a linear trend, and (6; X time + 0, X time?) in the case of a quadratic trend. Higher order trends
can be considered.

5.3 Modeling the TED Effect

The simplest way to parameterize the effect of TEDs is as an adjustment to the number of
strandings during the shrimp season. That is, set up an indicator variable that takes on the value
1, when TEDs are in effect and the value 0 otherwise.

If the overall mean is parameterized as simply a mean during the shrimp season and a mean
off-season as discussed in Section 5.1, then the parameter for the TED effect will have the
interpretation as either decreasing strandings from the shrimp season mean if it is negative, or
increasing strandings from the shrimp season mean if it is positive. More formally, we have the
model Strandings; = 1 X1: + 2 X2: + B3 X3 where X, and X, are as defined in Section 5.1
and X3, is defined as

X = 1 if TEDs were on for period t
3 =1 0 if TEDs were off for period t

Now, the expected number of strandings off-season is S, the expected number of strandings
on-season with no TEDs is 3, and the expected number of strandings on-season with TEDs is
B2 + (3. Here, B3 is the TED effect, and if TEDs have the effect of reducing strandings, we
would expect to see a negative estimate of this quantity.

The estimate based on the mean given in Section 4.4 is essentially this estimate, unadjusted
for the other effects of Equation 1. Incorporating the TED parameter with other model compo-
nents will give us an adjusted TED effect.

5.4 Modeling the Seasonality

As stated in Section 5.1, a shrimping effect might be parameterized as a step-function. A
seasonal component due to the relatively slow migration of turtles would likely be fit well by
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a sine or cosine wave. Thus, to account for the one or more periodic components observed in
the strandings record, we may add terms like R; cos(2mw;t + ¢;) to the model. Here R; and
¢; are the amplitude and phase of the ith sinusoid. The amplitude is simply the *height’ of the
sinusoid, and the phase is the shift from zero. These must be estimated. The frequency, w; is
assumed known; logical choices include frequencies of 1 cycle per year in the case of a possible
annual frequency associated with the spring northward migration of turtles, 2 cycles per year to
include the possibility of additional fall increases in strandings due to the southward migration,
and even 3 cycles per year to account for the possibility of an early spring increase due to
other seasonal fisheries. Since we appear to have both a shrimp season effect and seasonal
components due to turtle movements and other factors, adding these sinusoidal components to
the model containing the step-function shrimping effect term is reasonable.

One difficulty with this parameterization of the seasonality is that that amplitude and phase
parameters enter this model nonlinearly. To allow estimation using least-squares, we can
linearize the sinusoidal components using the trigonometric identity:

R,cos(wm,) A os( )+B1 sin( 2 2met

=) @

Here the parameters to be estimated are the A; and B; rather than the R; and ¢;. And this can
be done using least-squares rather than non-linear least-squares thus making computation a bit
simpler. All model fitting in this report was done using this identity, and least-squares. One
can recover the R; and ¢; by simply inverting this identity to get R; = (A? + B?)> and ¢; =
arctan(— B;/A;). In this way the estimates can be reported in either form.

5.5 Separating Seasonal Turtle Abundance and the Shrimping Effect

The seasonal abundance of turtles reaches its peak in May or June, which corresponds with the
onset of shrimping every year. This makes the separation of these two effects quite difficult.
But, as stated in Section 3.2, turtles are nearly as abundant in the fall as in the spring. Thus we
would expect to see a large increase in strandings in the fall of every year as in the late spring
due to the abundance of turtles alone. Although perhaps not as large due to mortality over the
course of the year and the fact that these migrating turtles are not caught in significant numbers.
Generally, we do not see an increase in strandings comparable to that early in the year. From
this, we could conclude that the predominant effect on strandings is shrimping activity, and not
the seasonal abundance of turtles. But, we would like to include terms in a statistical model to
account for the seasonal abundance of turtles and other seasonal effects.

The fact that strandings drop off after the beginning of the shrimp season may be due to
several things. First, this is consistent with the northward migration of some of these turtles, and
also mortality within local populations of ’resident’ turtles, possibly associated with shrimping
grounds that are heavily favored by shrimpers. If one makes the assumption that migrating
turtles have a lower probability of being caught due to the fact that they are simply ’passing
through’, (i.e. the probability of capture is proportional to the time spent in the shrimping
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grounds of the study area) than it seems reasonable that we would not see a large increase in
strandings in the fall.

Figure 6 shows a plot of the average number of strandings in each period over all years. If
strandings were only proportional to population, this plot would have two distinct, large peaks
based on the discussion of Section 3.2. What we see is nearly 0 strandings for the first week
of April, followed by a large jump mostly due to the years in which the shrimp season started
in early May. Even larger increases occur in July and August, corresponding to the months of
intense shrimping pressure. This is followed by a sudden decrease through September, and a
gradual fall from there through December. This plot suggests that the majority of strandings
are due to shrimping effort. But the fact that the shrimp season starts on different dates every
year makes this plot less meaningful.

We can make a similar plot, but define our periods as deviations from the starting date of
the shrimping season. Doing this will allow us to gain a great deal of insight into separating
the seasonality of strandings from the shrimping effect. This is because in some years we
have 6 full periods of pre-shrimp season strandings data available. We will call these periods
relative periods. More precisely, for all years we will number the bi-weekly periods according
to their distance from the start of the shrimp season. In this way the strandings of a given period
are all representative of the same shrimping pressure relative to the start of the shrimping
season. We make no attempt to account for the varying amount of absolute shrimping effort (in
days) discussed in Section 2.3. The plot of the mean strandings per bi-weekly relative period
is given in Figure 7. This plot distinctly shows a gradual increase for the first 3 months leading
up to the beginning of the shrimp season, followed by a dramatic increase. We can assume that
turtle movements are relatively slow, so the difference between any 2 bi-weekly counts should
not be large based on turtle migration alone. Thus the very large increase at the start of the
season, and the following large values can be attributed to shrimping activity. There is a strong
hint of seasonality in this plot which shows up as a gradual increase in the spring and a gradual
decrease in strandings later in the year. Since effort is relatively constant over the whole year,
we can assume that the decrease in strandings after the beginning of the shrimp season seen in
Figure 7 is due to a depletion of resident turtles. Given the obviously large magnitude of this
shrimping effect, a better idea of the seasonality might be exhibited by making a plot similar to
Figure 7, but using only those years after the TED regulation went into effect (1988 to 1993).
Figure 8 shows this plot. For comparison, Figure 9 shows the same plot using only those years
with no TED use, 1980 to 1987. The difference in the shrimp season effect is obvious. This
suggests an alternate parameterization to those given in Section 5.1 and 5.3. We could model
the shrimp season effect as being different in the years 1980-1987 than in 1988-1993, and
possibly different in 1988 and 1989 than in 1990-1993. This will provide an estimate of the
shrimping season effect in the years of TED (full or partial) use that will be that reduction in
strandings due to TED use. This alternative parameterization will not be considered here. This
parameterization would be slightly more general in that it would allow the difference between
the mean strandings on season with no TED use and the mean strandings on season with TED
use to take on 2 values, rather than just 1 as is the case with the parameterization of Section 5.3
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Figure 7: Mean number of strandings per period relative to the start of the shrimping season.
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and Section 5.1. In effect, we would be allowing for a different TED effect in full TED years
than in partial TED years.

Figure 8 gives a much clearer representation of the seasonality of strandings, free of
shrimping effects for the most part. It appears that we do see a slight increase in strandings
in the fall, toward the end of the shrimping season. We also see the peak strandings at the
beginning of the season, as we would expect, followed by the gradual decrease through the
seventh period of the season. Additionally, there is a small increase early in the season, two
months prior to the onset of shrimping.

6 Building a Statistical Model for Turtle Strandings
6.1 The Basic Model

As an initial model that incorporates the components of the model given in Equation 1, let
us consider a model that contains multiple periodicities in the form of 3 cosine waves with
frequencies of 1, 2, and 3 cycles/year (Section 5.4), a linear trend (Section 5.2), a step function
to model the effect of the shrimping season (Section 5.1), and an indicator that models the
effect of TEDs as an adjustment to the shrimp season mean (Section 5.3). This includes terms
for all of the major effects discussed in the previous sections. More specifically, the model can
be written as:

2t
Yi = fiXu+ BXo+ B3 X5+ Ry COS('1—6" + ¢1) (3
4rt 67t
+ R; cos(1—7; + ¢2) + Rs cos(—l% + ¢3) + 01t + 0,8% + ¢

Where {¢;} are independent and distributed normally with mean zero and constant variance, the
standard regression assumptions. Here the parameters that must be estimated are the amplitude
and phase parameters R; and ¢;, the trend parameters 6;, 6, the off-season and on-season mean
strandings £ and (3, and the TED effect, 5;. Note that this model is parameterized without
a constant mean. Here the two variables X;; and X;; added together take the place of an
overall constant. The variables X;;, X;, and X3; are defined as discussed in Section 5.1 and
Section 5.3. We will use the identity given in Section 5.4 to linearize the sinusoids of Model 3,
and use least-squares to obtain parameter estimates.

Given this parameterization the least-squares estimate of ; will be the mean number of
strandings during the shrimp season in periods of no TED use, adjusted for the periodicity and
trend in strandings. Similarly, the estimate of 3, will be the adjusted mean number of strandings
off-season. And S, the TED effect, will be the estimated difference between the on-season,
no-TED use mean and the on-season, with-TED use mean. If TEDs are effective in reducing
turtle deaths, hence there are less turtle strandings, 33 will be negative. Therefore an estimate
of this will be negative on average. An estimate of 0 for 33 will indicate no TED effect, and
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we can test the hypothesis that 83 = 0 using a t-test. Since TEDs should not cause strandings,
it is appropriate to use a 1-tailed t-test in this case, and test H, : 33 = 0 versus H, : 33 < 0.

6.2 Fitting a Model to the Raw Strandings

Model 3 was fit using ordinary least squares. The sinusoid corresponding to 3 cycles per year
was found to be only marginally significant, however we will retain it in the model since we
believe a mechanism exists to account for this. Additionally, adding a cubic trend term to
the model increased the R? significantly, and the estimate was statistically significant. Thus
Model 3 was modified adding the cubic trend term 65¢3. Fitting this modified model by least
squares produces the estimates given in Table 5. The R? of this fit was 0.61. A standard
assumption in all regression models is that the variance of the errors is constant. Violation
of this assumption renders the standard errors of parameter estimates invalid. A plot of the
residuals over time is shown in Figure 10. It is plain to see from this plot that the error variance
is heteroscedastic (i.e. not constant) over time, rather it appears to be proportional to the
number of strandings. That is, in years of high strandings the variance appears to be much
higher than in other years. Figure 11 demonstrates this point nicely by showing the yearly
standard deviation of the residuals from Model 3 plotted against the yearly mean strandings per
period. This occurrence is common when analyzing count data, and typically can be rectified
by log transforming the dependent variable. The Box-Cox procedure also indicated that the log
transformation was the best one for this particular model. The Box-Cox procedure determines
the transformation in the class of power transformations that minimizes the mean-square error.
In this sense then, the log transformation (which is defined to be the Otk power) is the best
transformation for this particular problem. Here, the log transformation is that of the natural log
or log.. Because of this error heteroscedasticity, we will not bother to interpret the estimates
from the fit to the raw strandings.

6.3 Fitting a Model to the Log-strandings

Log transformation will have an effect on which variables are significant in the model since if
the appropriate model for log(Y) is a linear model, then the appropriate model for Y must be
multiplicative in some way. Therefore, one generally cannot expect to get the same significant
variables in both the linear model fit to Y and the linear model fit to log(Y").

In the case of the strandings record, a multiplicative model may make a good deal of
sense. As an example that illustrates this point, suppose we have the model Strandings =
(S(2) * k(shrimp))®, where S(t) reflects the seasonal abundance of turtles, and k(shrimp) takes
on two distinct values, one when shrimp season is in effect, and one when it is not. This says
that strandings are proportional to the seasonal abundance of turtles, and the proportionality
constant is different during shrimp season than off shrimp season. Raising this to the power
0 > 1 then allows the strandings to be relatively much higher when turtle abundance is high,
than when it is low. Taking the log of this gives us a linear model with a seasonal component,
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Parameter  Estimate Standard error ¢-Value P-Value
B 42.48256 423399 10.034 0.0001
B2 32.13626 5.17819 6.206 0.0001
B3 -16.22992 379739 -4274 0.0001
Ay -10.03695 2.57701 -3.895 0.0001
B 6.12757 2.04491 2997 0.0031
Ay 5.09764 1.47037 3.467 0.0006
B, -1.88836 1.60676 -1.175 0.2412
Az -2.41310 1.40010 -1.724 0.0863
Bs 2.49537 1.39513 1.789  0.0751
0, -0.75746 0.15410 -4915 0.0001
0, 0.00586 0.00159 3.693 0.0003
6; -0.00001 0.00000 -2.871 0.0045
80 82 84 86 88 90 92

Time

Figure 10: Residual plot from raw strandings model.
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Figure 11: Yearly std deviation vs. mean strandings per period.

and two constants, one to reflect the shrimp season effect, and one to reflect the off-season
effect.

We fit Model 3 with a linear, quadratic and cubic trend to the log strandings using least-
squares. We added 1 to the strandings before taking the log to allow periods of zero strandings
to have some meaning. The cubic trend term was statistically significant but added less than
0.005 (% of 1 percent) to the R? of the model and was only non-zero in the 9th decimal place.
So, this term was deleted from the model, giving the revised model

27t
log(¥;) = AiXui+ BaXa: + BaXai + Ricos(Tg + 1) 4

At 6t
+ R cos(1—7;- + 1) + R cos(l—z + ¢s) + 01t + 0o + ¢,

This was fit using ordinary least-squares and the resulting parameter estimates are given in
Table 6. The R? of this fit was a very respectable 0.877. The residual plot indicated a small
degree of non-constant variance, but not to the same degree as prior to the log transformation.
This residual plot is shown in Figure 12. To examine whether the assumption of normality
seems reasonable, we can examine the normal probability plot of the residuals from this model.
This plot simply plots the observed residuals against the expected quantiles from a normal
distribution. Figure 13 shows this plot. Under normality, the points should lie along a 45
degree line. In this case they do, and we can conclude that the residuals from this model are
normally distributed. Interestingly, the third sinusoid becomes significant in this fit and the
second sinusoid becomes less so.
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Table 6: Ordinary least squares estimates from log strandings model.

Parameter Estimate Standard error

t-Value P-Value

B/ 3.09070 0.16821 18.3737  0.0001
B2 197048 0.22448 8.7779  0.0001
B -0.80878 0.19366 -4.1763  0.0001
A, -0.68898 0.13150 -5.2393  0.0001
B, 0.58251 0.10410 5.5957  0.0001
Az 0.06529 0.07504 0.8702 0.3852
B, 0.16988 0.08191 2.0738  0.0393
As -0.18918 0.07145 -2.6477  0.0087
B;  0.17009 0.07118 2.3894  0.0177
6, -0.01616 0.00316 -5.1074  0.0001
6,  0.00007 0.00001 45731 0.0001
80 82 84 86 88 90 92
year

Figure 12: Residual plot from log-strandings model.
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Figure 13: Normal probability plot of log-strandings model residuals

6.4 The Error Correlation Structure

Another assumption when fitting a regression model using ordinary least-squares is that the
errors are uncorrelated. Violation of this assumption can be assessed by examining the auto-
correlation function (ACF) and the partial auto-correlation function (PACF) of the residuals.
Figure 14 shows the ACF and PACF of the residuals from Model 4. In these figures, the
horizontal lines correspond roughly to two standard deviations. It is evident from these two
plots that there is significant correlation among these residuals.

A class of models that is useful for correlated data are the ARIMA models. These are
discussed fully in Box and Jenkins (1976). Two particular models of this class that might
explain the ACF and PACF of these residuals are the AR(1) and MA(1) models. These stand
for auto-regressive and moving average of order 1, respectively. An MA(1) model will have
a significant lag 1 autocorrelation and an AR(1) model will have a significant lag 1 partial
autocorrelation. These plots show both a significant lag 1 autocorrelation and a significant
lag 1 partial autocorrelation. This suggests that either an AR(1) or an MA(1) model may be
appropriate and perhaps even a combination of the two, an ARMA(1,1) model, may fit these
residuals.

An AR(1) model in it’s most basic form says that the current value of U; depends on the
previous value only,

Ui = pUs1 + 14

where v; is random error. The basic form of an MA(1) model is,

Ui=vi + aviy
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Figure 14: ACF of the residuals from log-strandings model.

here U; depends on the previous error, v;_;.

Here, we are using these two models as models for the residuals of Model 4. That is, the ¢;
from Model 4 take the place of the U, above.

Using SAS PROC ARIMA, we fit an AR(1), MA(1), and an ARMAC(1,1) model to the
residuals. All gave significant fits, but the MA(1) fit gave the minimum Akaike Information
Criteria (AIC), which is a measure of the quality of the fit of the particular model. The model
with the minimum AIC is optimal in some sense. The residuals of this fit showed no significant
correlation so we may conclude that fitting Model 4 with an MA(1) correlation structure is
a reasonable model. Under this model, using PROC ARIMA produces the best (minimum
variance) linear unbiased estimates. The standard errors associated with these parameter
estimates are valid and can be used to conduct statistical hypothesis tests. The estimates and
standard errors from Model 4 using PROC ARIMA are given in Table 7. As in Section 6.3,
the model fit is extremely good. The R? from this fit was 88 percent. Figure 15 shows a
plot of the log-strandings and the predicted values from Model 4 with MA(1) errors. The
predictions are generally good over the whole study period, with the exception that they tend
to fall significantly below the peaks of the very high strandings years, and in some cases we get
slightly negative predictions, in the periods of zero strandings. Figure 16 shows the inability of
this model to predict the periods of 0 strandings, and the very high strandings periods. This is
evident from the fact that the residuals are largest at these two extremes. This is generally the
case, as models predict mean behavior rather than the behavior of the extreme observations.
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Table 7: Estimates of MA(1) model parameters from log-transformed strandings.

Parameter Estimate Standard error ¢-Value P-Value

B 3.0071 0.20456 14.70 .0001
B2 1.9706 0.24680 7.98 0001
B3 -0.5764 0.21436 -2.69 0040
A -0.6961 0.13537 -5.14 .0001
B 0.5586 0.11436 4.88 0001
Az 0.0431 0.08822 0.49 3130
B, 0.1599 0.09356 1.71 0900
As;  -0.2000 0.07955 -2.51 0070
B; 0.1696 0.07942 2.14 0200
6, -0.0147 0.00401 -3.66 .0001
0, 5.64e-5 1.81e-5 3.12 0010
p -0.3556 0.06542 -5.44 .0001
- . i . . *
o : ; (R '
A
in ! .
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log strandings

Figure 16: Residuals plotted against log strandings.
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6.5 Interpretation of Parameters Using a Log Transformation

One problem with fitting a model to the log. strandings is that the parameter estimates have no
obvious interpretation. For example, on the original scale, a TED effect estimate of -10 can be
interpreted as TEDs having the effect of reducing strandings by 10 turtles per period. On the
log scale, this statement cannot be made. On the natural log scale, an approximation can be
made that is reasonable for small relative changes on the original scale. By noting that (from
the definition of the derivative)

log(Y + AY) — log(Y)

AY Y
if AY is small. Here, log(Y 4+ AY) — log(Y) is that change in log(Y) measured by S for a
unit increase in X in a linear model. Thus we can say that 8 =~ — Rearranging this a bit,
and if AY is negative, we getlog(l — 5) = B,or 4% =1 — €°. Note that AY AY is the relative

change in Y. Hence if 8 measures changes inlog(Y), 1 — ¢” measures rclatlve changes in Y.

From Table 7, we get an estimate of the TED effect of -0.576 on the log scale, which is to
say that TED use reduces the log of the strandings by 0.576. Using the above approximation,
this translates into a 44 percent decline in strandings as a result of TED use.

6.6 Back-transforming the Parameter Estimates

Aside from this approximate relative interpretation, we can get approximate estimates of the
parameters on the original scale. Thus, they will have a more direct interpretation. Sakia
(1990) discusses this approximation, which is based on a Taylor series expansion. If Y is
our untransformed response variable and Y’ is our log-transformed variable, and we assume
the linear model Y’ = X’ + ¢ then we can make the approximation Y ~ exp(X B + é¢).

Then we can solve ¥ = X ,8 for ,B our parameter estimates on the original scale. By noting
that the Var(Y) ~ Var(X ,3) we can get approximate variances for these estimates. These
estimates and standard errors are given in Table 8. Since both the estimates and standard errors
are biased (see Sakia (1990)), thus the distribution of the t-statistic is unknown, we should
judge the significance of the parameters based on the estimates and standard errors on the log
strandings. We can use the approximations for the purpose of interpretation. For example, the
TED effect (33) is highly significant based on Table 6, and this parameter has the interpretation
that the mean strandings in periods of TED use is approximately 16 /ess than when TEDs were
not used. These estimates are biased, but the order of the bias is not large.

6.7 Adjusting the Standard Errors for Correlation and Non-constant Vari-
ance

If we work on the assumption that the residuals from the model exhibit the correlation structure
of an AR(1) process we have yet another alternative to getting parameter estimates on the
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Table 8: Approximate back-transformed parameter estimates and standard errors.

Parameter Estimate Standard Error t-value

B/ 35.8516 4.42060 8.11
B2 25.2905 5.89936 429
B3 -15.8104 5.08928  -3.10
A -9.9180 3.45583  -2.87
B, 6.5437 2.73573 2.39
Az 5.0505 197194 259
B, -1.6746 2.15266  -0.79
Az -2.4600 1.87768  -1.29
Bs 2.5870 1.87066 1.39
6, -0.3524 0.08317 -4.24
6, 0.001378 0.00038 3.63

original scale. Assuming an AR(1) model for the residuals, a method discussed in Gallant

(1987) allows for the estimation of parameters using the untransformed data, but provides
standard errors that are corrected for both autocorrelation and non-constant variance. This
may be worth while in our case because, as stated above, even the residuals from the log-
transformed model fitting exhibit a certain degree of non-constant variance. Therefore, while
we may compromise the model in that we are assuming AR error structure, we are at least
acknowledging the non-constant variance which we assume to not exist in the log transformed
data.

_ Generally, if we have the model Y = X3 + ¢, where Var(e) = V and we estimate f3 as
B = (X'X)"1 X'y (i.e. the OLS estimate as opposed to the GLS estimate), then the variance
of the OLS estimate is (X'X)~1 X'V X(X’'X)~!, and not 02(X'X)~! as is the case under the
assumption that V is the identity matrix. If we assume that V has the structure of an AR(1)
model and the errors are heteroscedastic than we can estimate V. Gallant (1987) gives the
details of this for nonlinear models, and this has a direct linear model analogy which we have
implemented here..

Applying this method to get adjusted standard errors for the OLS estimates of Table 5
gives the standard errors shown in Table 9. Assuming the error correlation structure to be
misspecified as an AR(1), these standard errors will be biased, but the order of the bias should
not be large.
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Table 9: Parameter estimates with standard errors computed conventionally and adjusted for
non-constant variance and serial correlation.

Parameter  Estimate Conventional Adjusted
Standard error ¢ Value Standard error ¢ Value

B 42.48256 423399 10.034 10.62588  3.998
B2 32.13626 5.17819  6.206 12.06651  2.663
Bz -16.22992 3.79739 -4.274 3.98981 -4.068
A1 -10.03695 257701 -3.895 3.33828 -3.007
B,  6.12757 2.04491 2997 2.67012  2.295
Ay 5.09764 1.47037  3.467 1.65126  3.087
B, -1.88836 1.60676 -1.175 141421 -1.335
A -241310 140010 -1.724 1.79221 -1.346
B; 249537 1.39513  1.789 1.36702  1.825
0, -0.49061 0.07851 -6.249 0.19673 -2.494
6,  0.00190 0.00034  5.631 0.00077 2471

6;  -0.00001 0.00000 -2.871 0.00001 -1.820
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7 Discussion

We have presented several methodologies for estimating a TED effect and assessing it’s signif-
icance. Additionally, we have estimated other components of the strandings record that are of
interest. These include the effect of shrimping, periodicity in strandings and long term trend.

7.1 Estimate of the TED Effect

A naive estimate based on the mean strandings per bi-weekly period (Section 4.4) is the simplest
of these, and suggests a TED effect on the order of -13 turtles per period or a 65 percent decline
in strandings as a result of TED use based on an average of 20 strandings per period when
TEDs were not in use and 7 when TEDs were in use. This does not include effects due to other
factors such as trend, or periodicity and so is biased in that it includes parts of these effects.

Fitting Model 3 by least squares provides an estimate of the TED effect of -16.2 (Section 6.2).
That is, the effect of TED use reduces the number of strandings by 16.2 from the mean number
of strandings during the shrimp season, a 38% decline based on an average of 42 strandings
per period during the shrimping season. Additionally, this accounts for trend and the periodic
behavior of strandings. Although this was significantly less than 0, the standard errors used to
make this test are invalid due to the obvious non-constant variance. However, provided that
the model specification is correct, this is an unbiased estimate. This is unlikely to be the case
though, since a variance stabilizing logarithmic transformation of strandings produces a much
better fit. This suggests a multiplicative model, rather than additive.

The fit of Model 4 (using the log transformed strandings) is extremely good, giving an R?
of 88 percent (Section 6.3). However, we find that the errors are not independent, so again the
standard errors are not valid. Fitting this model, but allowing the errors to exhibit dependence in
the form of an MA(1) model (Section 6.4), gives valid standard errors with which to assess the
significance of the parameters. The residuals from this model indicate a very slight departure
from the assumption of constant variance. We can expect the effect of this to be marginal. From
Section 6.4, the estimate of the TED effect from this model was —0.576 with a standard error of
0.214 giving a t-value of —2.69. The appropriate 1-tailed critical value with which to compare
this with is 1.65, indicating that the TED effect is significantly negative with a P-value less than
0.005. Since this model was fit to the log-strandings, a direct interpretation of this estimate
in numbers of turtles cannot be made. However we can say that TEDs reduce strandings by
approximately 44 percent from the shrimp season mean (Section 6.5). Alternatively, we can use
an approximation to back-transform the parameter estimates to the original scale (Section 6.6).
Doing this gives us a TED effect estimate of —16 and a shrimp season mean strandings of 36
indicating a reduction in strandings of 44 percent as a result of TED use. This provides us with
an estimate of the TED effect in units of turtles/period which may be useful.

Finally, by accepting some misspecification in the error correlation, structure we can use
the least-squares estimates based on the untransformed strandings and adjust the standard
errors for non-constant variance and autocorrelated errors (Section 6.7). This is as opposed
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to moving-average errors which is the structure indicated by our analysis in Section 6.4.
Furthermore, as some effects may enter the model multiplicatively, there likely exists model
bias which effects our parameter estimates. The TED effect is estimated to be -16.2 using
ordinary least squares, and the adjusted standard error is 3.99, producing a t-value of -4.1 which
again is highly significant. Again, this is a 38 % decline in strandings as a result of TED use.

The results based on the log strandings lack interpretation on the original scale and the
results based on the raw strandings of Section 6.7 are most likely biased since the true model
may be multiplicative in some fashion. Here also, the standard errors will be biased if we have
indeed misspecified the autocorrelation structure. Due to the very good fit to the log-strandings,
we recommend that inference be based on the results from the log strandings. Where necessary,
interpretation should be done using either the approximate relative interpretation of Section 6.5
or the results of Section 6.6. So we believe an estimate of 44 % or -16 turtles/period is a sound
estimate of the TED effect.

This estimate can be considered as being adjusted for trend, seasonality, and the shrimping
season. The naive estimate (or unadjusted) is smaller than the adjusted estimate (-13 vs. -16 for
the adjusted) however the percentage decline is considerably larger (65 % for the unadjusted
vs 44 % for the adjusted).

7.2 The Estimated Trend in Strandings

The estimated form of the trend, based on the log transformed strandings estimates is shown in
Figure 17. This shows the sharp decline in strandings through 1988, a relatively stable number
of strandings for two years, and then a slight increase beginning in 1990. Based on this trend,
we would expect strandings to reach the average level seen in 1980 again in 1997. Note too,
that this trend is not nearly as extreme as is first suggested by Figure 1. This is because the 2
very high strandings that occurred in 1980 (141 and 145 in consecutive periods) create a strong
visual effect on the plot of strandings over time. This effect is partially diminished by the log
transformation, and the fact that the model fits the mean behavior as opposed to individual
large values. The overall shape of this trend is consistent with the results of Section 4.3. That
is, strandings have not continued to decrease in recent years and have even increased slightly.
The horizontal line is the average of the off-season and on-season mean strandings.

As an estimate of the average decline in strandings per year over the study period we can fit
Model 4 with only the linear trend term. Doing this provides an estimate of —0.00245 which
is approximately a 4 % linear decline in strandings per year. This trend was highly significant.
Fitting only the linear trend model to the untransformed strandings gives us a linear trend
estimate of approximately -5.6 %/year.

7.3 Estimated Periodicity of Strandings

The estimated periodic components of strandings is shown in Figure 18. The spring and summer
components are obvious, and the fall component is slightly obscured, however it is seen as
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Figure 17: Estimated long-term trend in turtle abundance
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a slight rise late in the summer (approximately the 12th bi-weekly period which corresponds
to September). The horizontal line is the average of the off-season and on-season mean log
strandings. Since this fitted curve is the sum of the three periodic components representing
frequencies of 1, 2 and 3 cycles/year it may be useful to examine each of the components
separately. Figure 19 shows each of these components. The annual frequency is the largest of
these and is attributed to the abundance of turtles in the summer during shrimping season. The
bi-annual frequency is not obvious to interpret since one peak occurs very late in the summer,
and the second peak occurs at the end of the year, running over to the beginning of the year.
It is worth noting that this component was not significant. The third sinusoid produces peaks
where we would expect to see them. This sinusoid was highly significant based on the model
fit to the log strandings. This is consistent with both the historical sturgeon gill net fishery in
the spring and the southward migration of turtles in the fall.

8 Conclusions and Future Work

We proposed a linear statistical model for loggerhead turtle strandings that included terms for
the effect of shrimping activity, long-term trend, and seasonal variations in turtle strandings.
This model also included a parameter to represent the TED effect, in which we were primarily
interested. We log transformed strandings to account for heteroscedastic error variance and
used an MA(1) model to account for the observed error correlation. Several different attempts
were made to provide estimates of the parameters from this model on the original scale.

Our model fit to the log strandings produced a good fit with an R? of 88 %. The estimate
of the TED effect on the log scale is -0.58, which is approximately a 44 percent decline in
strandings as a result of TED use, or 16 turtle strandings per period less in periods of TED use
than in periods of no TED use. Several attempts to estimate the TED effect on the original scale
are examined, all resulting in estimates comparable in magnitude to this. A naive estimate based
on the mean strandings per period results in an estimate of -13, which is a 65 % decline. The
former estimate is adjusted for a negative trend in strandings, seasonality, and the shrimping
season and the later is unadjusted for these effects.

The estimate based on the log-strandings is adjusted for the annual periodicity in strandings,
a downward trend in strandings, and also the effect of shrimp season. Attempts to fit a model to
the raw strandings produces larger estimates of the TED effect than the estimate based on the log-
strandings but, given that the data exhibit strong heteroscedasticity, the log transformation gives
acceptable standard errors with which to assess significance. All attempts to assess significance
of the TED effect using the log strandings or otherwise indicated a highly significant TED
effect. Our estimate of a 44% reduction in strandings as a result of TED use is considerably
different than that based only on the mean strandings per period. The later unadjusted’ estimate
was a 65% decline in strandings as a result of TED use.

The estimated trend in strandings is quadratic and indicates that strandings are on the
increase. This is evident on viewing the raw strandings, and closely mimics what is believed to
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be occurring in the population. The estimated trend based on the log strandings suggests that
strandings will reach the mean level (in logarithm) seen in 1980 again in 1997. We attribute
this to an increasing population as a result of TED use (Crowder et al. (1994)).

Sinusoids of 1, 2, and 3 cycles/year were fit. The strongest component represents that due
to the increase in turtle abundance in the summer months. Early spring and late fall components
due, respectively, to a sturgeon fishery during the first 7 years of the record and presumably the
southward migration of turtles in the fall were also detectable in the data.

We feel that more work needs to be done concerning the relationship between the amount
of shrimping effort and strandings. Although no strong relationship is obvious given shrimping
season is in progress, it makes some sense to incorporate absolute effort into a model of
strandings. Our major drawback at this point is the lack of data after 1990. This later data
corresponds to 3 of the 4 full TED use years. Another possible area of work may involve
modeling the daily strandings data as a non-stationary poisson process. This approach would
remove several sources of error associated with combining the data into bi-weekly periods.
Additionally, working with the true data as opposed to an aggregation of the data may provide
more insight into the actual behavior of strandings over time. However daily strandings data
are not readily available at this time.
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