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Abstract

Data swapping is a common technique for statistical disclosure limitation, but its
effects on real data are not understood completely. In this paper, we consider measures
that can be used to quantify distortion to the data engendered by data swapping when
the variables in the data set are categorical. These measures are applied to a data set
derived from the Current Population Survey. Their behavior is studied and compared
for various values of the swapping rate and different choice of the variable swapped.
Key words: data utility; data confidentiality; statistical disclosure limitation; Hellinger

distance; Shannon entropy; total variation distance; contingency coefficient; Cramer’s
V.

1 Introduction

With the increase in information collected and maintained, especially by various federal agen-
cies, and the increased demand for access to such information, the use of statistical disclosure
limitation methods to protect confidentiality is essential and widespread. In the usual sce-
nario, data are collected on subjects (individuals or organizations) and then transferred to
the disseminator/agency, under conditions of protecting confidentiality. The disseminator

then makes the data available to users, making sure that the data are protected in such a
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way that intruders cannot compromise the privacy of data subjects. As data disseminators,
government agencies wish to provide as much information as possible to the data user while
satisfying the mandate of confidentiality.

Various methods have been proposed for protecting confidentiality (of data) and privacy
(of data subjects). These methods can be broadly classified as methods that are geared to
the release of microdata records—for example, aggregation, data swapping, jittering, vari-
able (attribute) and cell suppression, and those that deal with release of data summaries—for
example, intelligent table servers [8, 11] and regression servers (that selectively release infor-
mation requested by user queries).

Data swapping achieves confidentiality protection by selectively modifying a fraction of
records, thus making it impossible for an intruder to be certain that any record in the
microdata corresponds to an actual data subject. Dalenius and Reiss [7] appear to have been

the first to use the term “data swapping.”

They present theoretical results indicating that,
under various assumptions, it should be possible to preserve statistics defined on any specified
dimension of the microdata. Reiss [16] presents a modified technique called “approximate
data swapping” that simulates data from the joint distribution that one is interested in
maintaining. However, this technique appears closer to synthetic data generation than to
what is generally understood as data swapping. Zayatz et al. [20] discuss data swapping in the
context of the 2000 Census. Boyd and Vickers [4] refer to “record swapping” when swapping
under constraints (on unswapped attributes). Moore[13, 14] discusses “rank swapping” and
the “confidentiality edit,” which are also versions of constrained data swapping (see §2 below
for details).

Clearly data swapping alters the data. While this change reduces the risk of violating
confidentiality, it may also diminish the utility of the data to users. In this paper we study
effects of data swapping through a number of distortion measures of (dis-)utility, comparing
their behavior as the swapping rate and swapped attributes are varied. Winkler [18] and
Yancey et al. [19] have studied risk measures for data swapping, primarily from the point of
re-identification of records. Domingo-Ferrer et al. [9] have applied various measures of risk
and utility to U.S. Census data.

We lay out basic notation and terminology in §2. §3 discusses measures of distortion
that can be used to characterize the effects of swapping. Data from the Current Population

Survey are used for illustrative purposes throughout this section. §4 contains a discussion.



Table 1: Example of microdata with information on six records for average weekly work

hours, employer type, sex, and marital status.

Rec. No. | AvgHrs EmpTyp Sex MarStat
1 < 40 Gov M M
2 40  SelfEmp F UM
3 < 40 Priv F M
4 > 40 Priv. M M
5) > 40  SelfEmp F UM
6 40 Oth F M

2 Basic Terminology

Conceptualize the microdata or data file as a matrix, with the rows (also called records)
representing individuals or observations, and columns representing variables (attributes) for
which information on the observations is collected. Let N be the number of records, and let
v be the total number of variables in the microdata. Denote the j* variable in the microdata
by X;, and the i record by x; = (i1, T2, - . -, Tip)-

A formal definition of data swapping is given in Willenborg and de Waal [17], who define
a data swap of 2k elements in terms of k elementary swaps. An elementary swap is a random
selection of two records ¢ and j from the microdata and an interchange of the values of
variables being swapped for these two records. An informal definition of data swapping, that
helps visualize the process, is given by Duncan and Keller-McNulty [10] who have referred

” Thus, if we are swapping

to data swapping as “switching column values for pairs of rows.
the values of X; for records i and j, the post-swap values of the i and j* records will be
(21, Tig, . .., Tip) and (w1, Tj2, ..., T ), respectively. As Willenborg and de Waal [17] point
out, one way of carrying out k elementary swaps is to pick 2k random numbers from 1 to N
without replacement, and interchange values of the variable(s) to be swapped for the records
corresponding to the (2i — 1) and the 2" draws, i = 1,..., k. When the candidates for a
swap pair are picked at random we will refer to the resulting swaps as random swaps. By
default we assume that elements of a swap pair are picked without replacement—thus no
record appears in more than one swap pair.

Clearly not all variables in a record are swapped. We call the subset of variables that
will be swapped the swap variables or swapped variables. The fraction of the total N records

in the microdata (i.e., 2k/N, if all k£ elementary swaps were implemented) that are swapped



is called the swap proportion or rate. Henceforth, when we swap appropriate fields between
records ¢ and j, we use (i, ) to denote the swap pair.

In some situations there may be conditions on pairs of records, defined by variables other
than swap variables, in order for the two records to be feasible swap candidates. For instance,
for the data given in Table 1 we may only allow swaps between records with the same value
for Sex. In this case the swap pair (2,3) is feasible, whereas (1,3) is not. If we prohibit
swaps for records with the same value of MarStat, (2,3) is a feasible swap, whereas (3,4) is
not. Variables whose values define the feasibility of a swap pair will be called constraining
variables. We emphasize that constraining variables are not swap variables. The simplest
constraints, as exemplified above, are those of exact equality or inequality of the constraining
variable(s) associated with the pair of records to be swapped.

Let s be the number of swap variables, and ¢ be the number of constraining variables.
We can partition the collection of v variables as X = (X, X% XY) where X° denotes the
swap variables, X denotes the constraining variables, and XY denotes the variables that
are neither swap nor constraining variables. We sometimes refer to the post-swap values as
Y = (Y®, Y9 YY) (Note: (X XY)= (Y Y"Y))

When more than one variable in a data set is to be swapped, there are different ways to
effect the swap. We assume that swapped variables are swapped simultaneously: if we are
swapping 2k records on s = 2 variables X and X5, then we pick k pairs of records and
swap the values of both X? and X3 for the two records in a pair. This method preserves
relationships among the swapped variables, but modifies the relationship of swapped variables
to other variables in the data. (It is also possible to swap sequentially by carrying out s single-
variable swaps in sequence. In this case, for s = 2, we first pick k pairs of records and do
k elementary swaps for the values of X7, and then independently pick another k pairs and
swap the values of XJ.)

Random swaps may not always result in different values for the swapped variables. If we
swap AwvgHrs for the pair (1,2) the records for these two observations are different pre- and
post-swap, whereas if we swap AvgHrs for the pair (1,3) both records remain unchanged. We
call the first case a true swap, i.e., a true swap results in different pre- and post-swap values
for the records being swapped. Conversely, a swap that results in no change in record values
is called a false swap.

When a subset of the collection of swaps result in the same pre- and post-swap frequency
distribution for the records, then the swaps are said to be compensating swaps. For example,
for the data given in Table 1, if £ = 1 and the pair swapped is (2, 5), then the frequency of the
combinations (F, UM, 40, SelfEmp) and that of (F, UM, > 40, SelfEmp) in the microdata



does not change. More complicated examples, where compensation occurs even when the

values of the non-swap variables are not equal for every swap pair, can be constructed.

3 Measures of Distortion

Inevitably, data confidentiality measures distort joint distributions in the data. One advan-
tage of data swapping is that, as only switches of values between records are involved, the
univariate marginal distributions of all variables in the microdata are preserved. In addition,
because (in our setting) when multiple variables are swapped they are swapped simultane-
ously, joint distributions not involving swap variables or only involving swap variables are
also preserved. However, joint distributions that involve both swap and non-swap variables
can be distorted. Dalenius and Reiss [7] have theoretical results that imply the possibility
of preserving p-variate statistics in the swapped data (p < v), but it is not clear that the
assumptions under which their results are derived hold in practical situations.

To measure changes in joint distributions, we consider five different measures of distor-
tion between pre- and post-swap data. Hellinger distance and total variation distance are
standard measures of distance between distributions, Cramer’s V and the contingency co-
efficient C are measures of association for bivariate distributions (more specifically, m x n
contingency tables), and entropy is an information-theoretic measure of uncertainty. Total
variation distance for univariate distributions, entropy-based measures, Cramer’s V, and the
contingency coefficient have been considered by other authors (see subsections that follow)
in the context of data swapping. However, Hellinger distance does not appear to have been
used previously, nor has the general form of total variation distance.

We study the effect of swap variables and swap rates on data from the Current Popu-
lation Survey (CPS), using a modified version of the CPS for 1993 obtained from [1]. This
version has 48,842 observations and retains only 8 variables, some of whose values have been
aggregated. We will refer to this data set as CPS-8d data. The variables present in the data
and definitions of their categories are given in Table 3.

We studied the effect of three swap proportions (0.01, 0.05, and 0.1) on unconstrained
swaps of a single variable at a time, i.e., s =1, ¢ = 0, and © = 7. However, as we swap every
one of the eight variables, we will be considering multiple permutations of X, i.e., X; will
represent each of the variables in the data set in turn. When X (as well as its observed value
x) represents the entire data vector, we are measuring the distance between the v-variate joint
distributions in the data. However, in some cases we may be interested in either preserving

(or destroying) some lower-dimensional joint distribution. Replacing X by the appropriate



Table 2: Variables and Category Values for CPS-8d data.

Variable Name Categories

Age (in years) <25, 25-55, >bH5

Employer Type Govt., Priv., Self-Emp., Other
Education <HS, HS, Bach, Bach+, Coll
Marital Status Married, Other

Race White, Non-White

Sex Male, Female

Average Weekly Hours Worked | < 40, 40, > 40

Annual Salary <$50K, $50K +

v1 dimensional vector (v; < v) representing the variables in the distribution of interest allows
us to compute the distortion for the corresponding v; dimensional joint distribution. In the
following subsections we will denote the empirical density present in the pre-swap data as f,
and that in the post-swap data as g.

We computed Hellinger distance, total variation distance, and change in entropy for the
complete 8-variate distribution. As measures derived from Cramer’s V and the contingency
coefficient C were computable only for all bivariate distributions in the data, we computed all

bivariate Hellinger distances, total variation distances, and entropy changes for comparison.

3.1 Hellinger Distance

Hellinger distance ([12], for example) between distributions f and g on a countable state

H(f,g) = %\j > <\/f(X) - \/g(X)>2- (1)

We note that the same absolute difference in f(x) and g(x) affects the Hellinger distance to a

space is defined as

greater extent when the value of f(x) is small. The interpretation of H(f, g) is as the sine of
the angle between the Hilbert vectors representing /f and ,/g. Each square-root density can
itself be interpreted as a point on the unit sphere in a real Hilbert space. Hellinger distance
also corresponds to Cressie-Read divergence (see [5, 6]) with A = —0.5.

Figure 3.1 plots 8-way Hellinger distance for all three rates, and Table 3 gives 2-way
Hellinger distances for the 5% swapping rate. From Figure 3.1 we see that distortion in-

creases as swap proportion increases. The minimum distortion across all three rates for



Table 3: Values of 2-way Hellinger distance and averages for fixed swap variable (in column
margin) for 5% swapping proportion. Column variable is swapped, and row variable is the
other variable in pair for adV computation. Row maxima are indicated by bold face and

minima by italics, as are maxima and minima for the mean.

Age EmpTyp Edu MS  Race Sex AvgHrs AnnSal
Age - 0.0763 0.0730  0.0900 0.0440 0.0511  0.0649 0.1193
EmpTyp | 0.0740 — 0.0476  0.0583 0.0652 0.0595 0.0592  0.0548
Edu 0.0882 0.0613 — 0.0450 0.0468 0.0386  0.0518 0.0934
MS 0.0912 0.0585  0.0405 — 0.0566 0.0990  0.0550 0.1167
Race 0.0357 0.0468 0.0173  0.0440 — 0.0471  0.0266 0.0472
Sex 0.0435 0.0532  0.0364 0.0939 0.0557 - 0.0631 0.0800
AvgHrs 0.0810 0.0649 0.0508 0.0635 0.0592 0.0787 - 0.0819
AnnSal | 0.1061 0.0524 0.0638 0.0982 0.0547 0.0711  0.0591 -
Mean 0.0742 0.0591 0.0471 0.0704 0.0546 0.0636  0.0542 0.0848

8-way Hellinger distance is obtained when Edu or AvgHrs is swapped, and the maximum
when AnnSal is swapped. From Table 3 we see that for the 5% proportion a swap of AnnSal
is most likely to maximize distortion, whereas a swap of Edu often results in minimum dis-
tortion. This holds also for the mean distortion, where the average is taken over non-swap

variables in the bivariate distribution.

3.2 Total Variation Distance

For a countable state space the definition of total variation distance is
1
V(F9) =5 S 16 — 9.

The “index of dissimilarity” considered by Moore [14] is a special case of this distance defined
for a single variable.

As for Hellinger distance, from Figure 3.1 we see that total variation distance in the 8-
way distribution increases as the swapping rate increases. Race or Edu are the minimizers of
8-way total variation distance, AnnSal or MS are its maximizers.

From Table 4, which contains total variation distances for bivariate distributions for the

5% swap rate, we see that Fdu and Race are the most frequent minimizers. MS dominates
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Figure 1: Graph of 8-way Hellinger and total variation distances, and 8-way entropy change

for 1% swap proportion (circles), 5% swap proportion (triangles) and 10% swap proportion
(pluses).
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Table 4: Values of 2-way total variation distance and averages for fixed swap variable (in
column margin) for 5% swapping proportion. Column variable is swapped, and row variable
is the other variable in pair for adV computation. Row maxima are indicated by bold face

and minima by italics, as are maxima and minima for the mean.

Age EmpTyp Edu MS  Race Sex AvgHrs AnnSal
Age 0.0070 0.0067 0.0112 0.0028 0.0054 0.0086 0.0100
EmpTyp | 0.0071 - 0.0086 0.0062 0.0041 0.0045  0.0060 0.0057
Edu 0.0103 0.0066 - 0.0049 0.0038  0.0030 0.0060 0.0160
MS 0.0116 0.0067  0.0037 - 0.0062 0.0218 0.0060 0.0257
Race 0.0023 0.0021 0.0003  0.0037 - 0.0043 0.0011 0.0033
Sex 0.0040 0.0037 0.0027 0.0195 0.0061 - 0.0074  0.0120
AvgHrs | 0.0132 0.0073 0.0060 0.0078 0.0055 0.0115 - 0.0117
AnnSal 0.0074 0.0046 0.0075 0.0179 0.0045 0.0095  0.0061 -
Mean 0.0080 0.0054 0.0043 0.0102 0.0047 0.0086  0.0059 0.0121

as a maximizer, with AnnSal and Age as close seconds. However, AnnSal as a swap variable

maximizes the average total variation distance, and Edu minimizes it.

3.3 Change in Entropy

The usual formula for Shannon entropy is given by
> f(x)log (f(x))

in our notation. The formula leads to the natural interpretation of Shannon entropy as the
expectation of a random variable that takes values log(f(X)) with probability f(X). An
alternative interpretation is that it is “the minimum average number of “yes or no” questions
required to determine the result of one observation of X” [3].

This entropy function takes its largest value when all possible values of X have the
same probability of being observed, and the smallest when all of the probability mass is
concentrated on a single value.

Shannon entropy has been considered as a distortion measure by other authors (see [17]).

However, they consider conditional entropy, whereas we use use post-swap entropy minus



Table 5: Values of 2-way entropy change and averages for fixed swap variable (in column
margin) for 5% swapping proportion. Column variable is swapped, and row variable is the
other variable in pair for adV computation. Row maxima are indicated by bold face and

minima by italics, as are maxima and minima for the mean.

Age EmpTyp Edu MS  Race Sex AvgHrs AnnSal
Age - 0.0074 0.0059 0.0133 0.0003 0.0016 0.0073 0.0138
EmpTyp | 0.0072 - 0.0024 0.0030 0.0018 0.0027  0.0044  0.0023
Edu 0.0086 0.0042 - 0.0013 0.0005 0.0005 0.0030 0.0145
MS 0.0136 0.0030 0.0011 - 0.0016  0.0208 0.0039 0.0282
Race 0.0002 0.0010  0.0000  0.0010 - 0.0012 0.0004 0.0010
Sex 0.0012 0.0022 0.0005 0.0188 0.0016 - 0.0056  0.0070
AvgHrs | 0.0110 0.0052 0.0029 0.0051 0.0019 0.0084 - 0.0089
AnnSal | 0.0108 0.0021 0.0068 0.0203 0.00153 0.0056  0.0048 -
Mean 0.0075 0.0036 0.0028 0.0090 0.00153 0.0058 0.0042 0.0108

pre-swap entropy to quantify entropy change (EC). That is,

EC =Y g(x)log (4(x)) — 3 f(x) log (£(x))

X

Positive values of FC indicate that swapping has increased the uncertainty in the data.

We note from Figure 3.1 that entropy change in the 8-way distribution increases as the
swap proportion increases. The ordering of swap variables in terms of distortion produced
in the 8-way distribution is exactly the same over all three swap rates. AnnSal and MS are
maximizers of distortion, whereas Race and Edu are its minimizers.

Table 5 gives values of the post-swap bivariate entropy minus the pre-swap bivariate
entropy. AnnSal and Age appear to be the dominant maximizers of the entropy change here,
and Race and Edu are the predominant minimizers. Average entropy change is minimized

by Race, with Edu in second place, and maximized by AnnSal.

3.4 Measure Based on Cramer’s V

Cramer’s V is a measure of association based on the y? statistic for a m x n contingency
table. It is defined as

2
V:\lein(m—l,n—l)’ 2)
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where 2 is the usual x? defined for the test of independence. For 2 x 2 tables the square of
Cramer’s V simplifies to a measure called phi and equals Goodman and Kruskal’s tau [2, 15].
Cramer’s V lies between 0 and 1—a value of 0 indicates no association, whereas a value of 1
indicates perfect association. It is more difficult to interpret values between the extremes.

Cramer’s V has been used by Boyd and Vickers [4] in the context of data swapping.
However, they used Cramer’s V on pre and post values of swap variables (within geographical
subsets of the swapped population) to assess the effect of the swap. Use of the measure in
this fashion for the entire data set would amount to quantifying some equivalent of the swap
rate.

In order to measure distortion due to swapping for any bivariate distribution we define

__y/spre post
adVy; = VEe — v,

)

where V2" is Cramer’s V defined for the cross table obtained from X; and X, where i =
2,...,u, j = 1 (Recall that the variables are permuted so that j represents each of the
variables in the data in turn). VZ*' is defined on the post-swap cross table Y; x Y;. Like
Cramer’s V, adV;; ranges from 0 to 1. Positive values of adVj; indicate that swapping has
weakened the association between X; and Xj.

The behavior of adV was similar for all three rates studied. The range of adV values for
the 1%, 5%, and 10% rates were approximately 0.001-0.012, 0.005-0.046, and 0.008-0.120,
indicating an approximately linear scaling of the distortion with respect to swap proportions
in the range 0.01-0.10. In Table 6 we present the values of adV for the 5% swap. AnnSal
is a dominant maximizer of adV, and Fdu is a dominant minimizer. The highest average

distortion is due to AnnSal, whereas the lowest is due to Fdu.

3.5 Measure Based on Contingency Coefficient C

Pearson’s contingency coefficient C also measures association, and is based on the y%. For

an m X n contingency table it is defined as

X2
C’:Hw, (3)

where x? is the usual x? defined for the test of independence. Like Cramer’s V, C' lies between
0 and 1. However, its upper limit depends on m and n, and it is difficult to compare tables
of different sizes with this measure. Like Cramer’s V, it also suffers from the difficulty of
interpretation for intermediate values.

As for Cramer’s V we define

__ ypre post
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Table 6: Values of 2-way adV and averages for fixed swap variable (in column margin) for 5%
swapping proportion. Column variable is swapped, and row variable is the other variable in
pair for adV computation. Row maxima are indicated by bold face and minima by italics,

as are maxima and minima for the mean.

Age EmpTyp Edu MS  Race Sex AvgHrs AnnSal
Age - 0.0190 0.0129 0.0305 0.0103 0.0150 0.0166 0.0308
EmpTyp | 0.0190 - 0.0067 0.0180 0.0183 0.0167 0.0141 0.0164
Edu 0.0196 0.0121 - 0.0106 0.0111 0.0077  0.0108 0.0445
MS 0.0313 0.0180  0.0086 - 0.0176  0.0463  0.0160 0.0603
Race 0.0053 0.0095 0.0001 0.0106 - 0.0131 0.0034 0.0110
Sex 0.0112 0.0130 0.0074/ 0.0416 0.0183 - 0.0212  0.0300
AvgHrs 0.0250 0.0174 0.0101 0.0214 0.0172  0.0325 - 0.0336
AnnSal 0.0228 0.0145 0.0197 0.0420 0.0149 0.0235 0.0174 -
Mean 0.0192 0.0148 0.0094 0.0250 0.0154 0.0221  0.0142 0.0324

where CF/° is the contingency coefficient defined for the cross table obtained from X; and
X, where ¢ = 2,...,v, 7 = 1. The cross table obtained from Y; and Y} is used to define
Cf’jOSt. Observed values of adC;; for the CPS-8d data range from 0 to 1. Positive values of
adCj; indicate that swapping has weakened the association between X; and X;. Comparison
of adC;; values across cross tables that have different sizes is, as noted above, problematic.
Table 7 shows how this measure performs for the 5% swap. We see that the performance
of adC' is very similar to that of adV” with almost the same minimizers and maximizers. We
caution against comparisons within this table as the bivariate distributions have different

dimensions.

3.6 Comparison of Performance

Overall there is significant consistency in the conclusions drawn from the different measures
considered. In all cases, distortion increases as the swap rate increases, with 8-way Hellinger
distance showing increase approximately proportionate to the swap rate. For the complete
8-way distribution total variation distance and entropy change result in almost the same
ordering of swap variables in terms of resulting distortion. Hellinger distance shows somewhat
different ordering (Age and AvgHrs appear to contribute the most to this change in order).

For bivariate distributions Age and AnnSal are the preponderant maximizers for both

12



Table 7: Values of 2-way adC and averages for fixed swap variable (in column margin) for 5%
swapping proportion. Column variable is swapped, and row variable is the other variable in
pair for adV computation. Row maxima are indicated by bold face and minima by italics,

as are maxima and minima for the mean.

Age EmpTyp Edu MS  Race Sex AvgHrs AnnSal
Age - 0.0245 0.0166 0.0259 0.01053 0.0148  0.0202 0.0286
EmpTyp | 0.0244 - 0.0109 0.0173 0.0181 0.0163  0.0184  0.0159
Edu 0.0253 0.0196 - 0.0104 0.0110 0.0076  0.0143 0.0382
MS 0.0266 0.0173  0.0085 - 0.0174 0.0372  0.0148 0.0479
Race 0.0053 0.0094 0.0001 0.0105 - 0.0129 0.0034 0.0109
Sex 0.0110 0.0126 0.0074 0.0333 0.0181 - 0.0192 0.0283
AvgHrs 0.0306 0.0227 0.013/ 0.0199 0.0169 0.0297 - 0.0307
AnnSal 0.0211 0.0141 0.0167 0.0331 0.0147 0.0222 0.0158 -
Mean 0.0206 0.0172 0.0105 0.0215 0.0152 0.0201  0.0152 0.0286

Hellinger distance and entropy change, whereas MS also plays a significant role for total
variation distance. Race and Edu are the primary minimizers for all three of these measures.
The behavior of adV and adC'is primarily like that of 2-way Hellinger distance in that AnnSal
is most likely to be a maximizer and Edu is most likely to be a minimizer. Interestingly,
however, MS plays a stronger role than Age in maximizing adC and adV. For all 2-way
measures, the average distortion is maximized by AnnSal. For most 2-way measures Edu
is a minimizer of average distortion, the exception being 2-way entropy change where Race
minimizes distortion over Edu.

Thus, it is clear that there are variables whose swapping leads consistently to higher
distortions, while others show consistently low distortions. Furthermore, when considering

extremes of average distortion, all of the other measures behave like Hellinger distance.

4 Discussion

Various measures of distortion that quantify changes in joint distributions have been studied.
While we have studied the performance of these measures on the joint distributions present
in the entire microdata, they can be used to look at subsets of the data.

Some of the measures that we have looked at have been considered in the context of data

13



swapping but not in the same fashion. For instance, Boyd and Vickers [4] have used Cramer’s
V and the contingency coefficient C. Moore [14] has considered the index of dissimilarity,
which is a special case of total variation distance. Of the measures considered, the ones based
on Cramer’s V and the contingency coefficient C are defined only for bivariate distributions.
Hellinger distance, total variation distance, and change in entropy have the advantage that
they are defined for higher dimensional distributions too.

The measures presented here are particularly suited to categorical data. The primary
characterization that unifies them is that they utilize only cell counts or frequencies. They
are not suited for continuous-valued variables, where all observed frequencies are close to 0.
Alternative measures or strategies must be devised for such variables. For ordinal or interval
scale data one might want to use a measure that also incorporates the value of the swapped
entity. For example, one might penalize data shifts to values further away from the initial

value more severely.
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