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Abstract

In this research, I present a method to measure long-term trends in the wet
deposition of sulfate, adjusting for effects of season and meteorology. The method-
ology proposed incorporates the use of generalized linear models, specifically
gamma regression models, which are a useful extension of previous efforts applying
ordinary least squares regression models to precipitation monitoring data. Gamma
regression models are appropriate for right-skewed, positive data and alleviate the
problems introduced by fitting regression models to such data on a transformed
scale. For the application presented here, the gamma regression models provide
simple estimates of long-term trends in the wet deposition of sulfate. While these
trend estimates are very similar to estimates produced by ordinary least squares
regression models fitted to the log-transformed data, I discuss other applications
where it is more advantageous to fit regression models on the untransformed scale.
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1 Introduction

In environmental monitoring, it is common to find data in the form of positive
measurements where the variance increases with the expected value of the
measurement. Researchers have noted that such data are conveniently analyzed
by applying the logarithmic transformation and using statistical techniques that
rely on the approximate Normality of the transformed variables.! In this paper,
I propose a technique for analyzing positive, right-skewed, and continuous data
in which the response variable is not transformed. I present an illustration using
acid deposition monitoring data, and discuss the advantages of preserving the
original scale of measurement. Specifically, I model the sulfate concentration in
precipitation, taking into account covariates like precipitation amount, season,
and local meteorological conditions.

This application was motivated by the need to assess recent trends in acid
deposition and to develop methodology to evaluate the future impact of the
Clean Air Act Amendments of 1990.2 Since acid deposition is known to depend
on meteorological conditions, regression-type models are useful for removing
known sources of variability. Additionally, they can correct for bias if short
periods of deposition monitoring overlap with confounding trends in weather.
Other uses of these regression models include the comparison of trend estimates
from precipitation samples collected on different time scales, and the estimation
of total deposition at each monitoring site, using the regression model to fill in

values when sulfate measurements are missing.



2 Model Formulation

I illustrate the application of a gamma regression model using sulfate concen-
tration in precipitation as the response variable. To adjust for meteorological
conditions, I include a few summaries of local weather conditions. The moni-
toring data used for this analysis were collected on roughly a daily basis during
periods of precipitation, so I use daily-level measures of meteorology that are
roughly concurrent with the precipitation activity. A reasonable model for daily
sulfate concentration would then be that S;, the sulfate deposition on day 3, is

gamma-distributed with density

This parameterization is standard in generalized linear models. Adopting com-
mon terminology distinguishing the shape and scale parameters, the shape

~1 under this parameterization.

parameter is v and the scale parameter is p;v
The value of v, the shape parameter, determines the amount of skewness.
Smaller values of v indicate less symmetric distributions, and, for larger v the

gamma, distribution is similar to the Gaussian distribution.

The expected value for the sulfate deposition on day i is
Hi = E(Si) = exp(xgﬂ%

where x; includes a seasonal factor, a component to permit the estimation of
long-term trends, and daily-level meteorological covariates. The assumption
that the S;’s have constant shape parameter v is equivalent to the condition

that the coefficient of variation »~1/2 is constant.3 In other words, the ratio



of the standard deviation to the mean is constant, so the standard deviation
is proportional to the mean. This assumption specifying how the standard
deviation is related to the mean is analogous to the assumption in ordinary
least squares regression that the standard deviation is constant for all levels of

the mean response.

3 Data Sources

To monitor the wet deposition of sulfate, precipitation samples have been col-
lected in several networks of stations located throughout the United States.
Typically, a covered bucket is set out for some specified period of time and the
bucket opens to collect the sample during periods of precipitation. The precip-
itation amount is recorded alongside the bucket. Several chemical constituents
are measured from the sample, including the sulfate concentration. For this
analysis, I use monitoring data from four sites in the Multistage Atmospheric
Power Product Pollutions Study (MAP3S) network, located in Whiteface, New
York, Ithaca, New York, College Station, Pennsylvania, and Charlottesville,
Virginia. In this network, the sample bucket is changed daily during periods of
intermittent precipitation and after each episode of heavy precipitation.* The
data span about 12 years at each of the sites, from late 1976 through 1988. The
reported sulfate and precipitation values used in this analysis were obtained
from the Acid Deposition System (ADS) and include a quality control flag.® I
exclude observations that failed the ADS quality control checks.

The regression models in this paper include meteorological covariates mea-



suring temperature and wind conditions. As suggested in other studies, I use 850
millibar wind measurements, selected to be concurrent with the precipitation
event, as potential measures of both transport and local weather conditions.5:?
The wind data used here are from a subset of the National Meteorological Center
(NMC) gridded upper air data. The particular data set employed has a grid
resolution of two degrees latitude by four degrees longitude,® so I selected the
grid point closest to the monitoring site. Information about wind is incorporated
using the zonal (U) and meridional (V') components, which provide information
about both wind speed and direction.

The regression equations also include a measure of seasonally adjusted tem-
perature, represented by 7T'. In this analysis, the temperature variable is also
extracted from the 850 millibar measurements using NMC gridded upper air
data. For each MAP3S site analyzed, I used the 850 millibar temperature
measurements from the closest grid point, taken to be the measure of daily
temperature for that precipitation event. Specifically, I calculate T} as the daily
temperature for the i** precipitation event minus the average daily temperature
for the month during which the ** precipitation event began. The average
daily temperatures for each month are estimated from all of the years for which
monitoring data are available. Temperature deviations should be positively
associated with sulfate concentration even after adjusting for season and wind
direction. Generally, warmer weather indicates an increase in photochemical
oxidants for sulfur. Also, higher temperatures during the day can increase the
intensity of thermal inversion created by the diurnal cycle of solar heating and

nighttime cooling.



In addition to the temperature and wind covariates, I also include a covariate
showing the number of days since the last precipitation event (D). Since
precipitation activity cleanses the air of pollutants, sulfate concentration should
be lower during periods of frequent precipitation episodes and should increase as
the time span between precipitation episodes increases. And finally, I include an
index variable corresponding to year to provide an estimate of long-term trend
in deposition. The yearly index variable is represented by Y in the regression
equation.

The full specification of the regression model is the following: daily sulfate

concentration is assumed to be gamma-distributed with mean

12
pi = exp(ar+ Y amMpmi + bylog P+ bUi + b, Vi
m=2
+b:T; + bgD; + b,Y5),
where, for the i** precipitation event, M,,; is an indicator variable for the month
in which the precipitation event begins, P; is the total precipitation amount
in millimeters, U; and V; are the zonal and meridional components of wind,
T; is a measure of temperature in degrees Celsius, D; is the number of days
since the last precipitation event, and Y; is the index variable for year. The

interpretation of the regression coefficients will be illustrated in some detail in

the results section below.

4 Results and Diagnostics

Table 1(a) shows the estimated regression coefficients for four sites in the MAP3S

network as produced by the glm function in the S programming environment.?



The reported standard errors are computed using the usual asymptotic covari-
ance matrix, assuming the observations are independent. This assumption will
be investigated in section 4.2 below. While the primary interest is the estimate
of long-term trend for all four sites, I will illustrate the interpretation of all of
the regression coefficients by focusing on the site at Whiteface Mountain, New

York.

4.1 Parameter Interpretation

The parameter a; is an intercept term and is of little interest. The parameters
ay through aqo estimate the difference between the logarithm of the expected
sulfate levels for January and the successive months, with all other variables
held constant. The estimated coefficient, a7, for example, is the difference
between July and January. Hence, the expected sulfate concentration is greater
in July by a factor of exp(1.162); i.e., it is about three times the predicted
amount for January given the same values of the other covariates. In general,
these coeflicients show how sulfate levels vary seasonally, typically reaching a
peak in July or August. The estimated coefficient for precipitation amount,
I3p is negative, indicating that the expected sulfate concentration decreases
as precipitation increases. If precipitation were doubled, for example, with
all other covariates held constant, the fitted sulfate value at Whiteface would
decrease by a factor of 279309 Hence, the fitted concentration for the event
with more precipitation would be about 81 percent of the fitted value for the

smaller precipitation event. The coefficient for the temperature variable b; is

positive, where an observed increase of 1 degree Celsius increases the expected



sulfate concentration by a factor of exp(.036), or, roughly, about 3.7 percent.
The interpretation of the wind components are presented graphically in Figure
1. These plots show the estimated effect of wind direction given constant
wind speeds of 1 m s~! (Figure 1(a)) and 8 m s~ (Figure 1(b)). With 0°
as north, the southwest quadrant is associated with winds with low sulfate
concentration. Winds from the west and northwest are associated with high
sulfate concentration. With a wind speed of 1 m s™1, for example, the predicted
sulfate concentration on a day with wind from the northwest would be about one
percent larger than if the wind were from the south. The second plot shows how
the magnitude of the effect changes with the wind speed. For a wind speed of
8 m s~1, the predicted sulfate concentration would be about 10 percent higher
for the same conditions. The positive coefficient for day count, l;d, indicates
that sulfate concentration is expected to increase for each day without rain
that precedes a precipitation event. Specifically, each rainless day increases the
expected sulfate concentration by a factor of exp(0.031), or about three percent.
And finally, the long-term trend coefficient Ey is negative, showing an observed
decrease in sulfate concentration through time. At Whiteface, the fitted values
decrease about 3.3 percent per year (exp(0.032) x 100%).

In general, the estimated coefficients and standard errors are similar among
all four sites, though the Virginia site looks somewhat different. Here, for ex-
ample, the wind components, the number of days between precipitation events,
and the long-term trend do not have a significant effect on sulfate concentration.
In general, the sign of the coefficients agree with common hypotheses for the

behavior of sulfate concentration discussed in the Data section.



4.2 Regression Diagnostics

As stated above, the standard errors reported in Table 1(a) are calculated under
the assumption of independence. Since sulfate observations are time series, it is
necessary to check the adequacy of the independence assumption. To investigate
the possibility of short-term serial correlation, I examined the standardized
deviance residuals from the fitted models. Though small and inconsistent, there
is some evidence of positive autocorrelation among the residuals from the four
MAP3S sites analyzed here. To adjust for the possibility of short-term serial
correlation, I applied a jackknifing technique, leaving out observations in blocks
defined by calendar month. The jackknifed standard errors tend to be close to
the usual asymptotic estimates. Table 1(b) shows the jackknifed estimates and
standard errors for the yearly trend term. The jackknifed estimates are very
similar to the standard estimates.

It is possible to perform several informal checks for departures from the
assumed gamma model using diagnostics that are similar to the usual diagnostic
plots for ordinary least squares regression. These include various plots using
standardized deviance residuals, plots to check the assumption that the coeffi-
cient of variance is constant, plots to check to adequacy of the logarithmic link
function, and plots to check that the terms in the linear predictor do not need to
be transformed. Checks for influential points and points with high leverage also
follow by analogy with ordinary least squares regression. Overall, the gamma
model with a logarithmic link function appears to fit the data well. Checks that
the coefficient of variation is constant for each site support the assumption that

the standard deviation is proportional to the mean. Examination of the partial



residual plots show that the scale chosen for each covariate in the linear predictor
is satisfactory. While there are no extreme outliers, there are a small number of
influential points at each site. Table 1(c) shows the estimated coefficients and
standard errors with these observations deleted; there is very little change in

the estimate of long-term trend.

4.3 Long-Term Trend

It is of some interest to determine if the long-term trend is best summarized as a
constant percent-per-year change in observed sulfate deposition.'? To investigate
this question, I refit the models described above without any specification for
the shape of the long-term trend. Instead, I fit each year as a separate factor
so that the long-term trend on the linear scale is fit as an unconstrained step-
function. Figure 2 shows the estimated change in the year effects, relative to
1978, obtained from this alternate approach. The constant percent-per-year
trend estimate in the basic model is roughly equivalent to smoothing the year-
to-year changes with a single straight line. More complicated summaries are also
possible. For example, if there is a sudden change in the rate of sulfate deposition
due to the Clean Air Act Amendments, the trend can be parameterized by a

step function or with a change-point in the slope.

5 Comparison with Lognormal Distribution

If the same covariates are fit assuming a lognormal distribution, i.e., with

a Normal-theory regression model fit to log-transformed data, the estimated
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coefficients are almost identical to the coefficients obtained from the gamma,
regression model. The final line of Table 1 lists the long-term trend estimates
from the lognormal model. A formal comparison of the log likelihood functions
shows that the gamma regression models are better at the Whiteface, NY and
Virginia sites, while the lognormal model does better at Ithaca, NY. There is
virtually no difference at the Pennsylvania site (Table 2).

The advantages of fitting the gamma regression model, though, evolve with
other applications. For example, for weekly-level sulfate data, or for values
obtained by aggregating to an even longer time scale, the logarithmic transfor-
mation tends to be too strong, creating a left-skewed distribution of observa-
tions. Also, if the actual fitted values on the original scale of measurement are
of interest, the use of transformed data creates the need for an awkward back-
transformation step. Though there are reasonable methods for obtaining fitted
values on the original scale from an analysis on a transformed data,'!!2 the
use of the gamma regression model alleviates the problem. Furthermore, if it is
desirable for the model to have an easily interpretable physical meaning, which
is the case for the model for sulfate concentration, the use of generalized linear
models, like the gamma regression model, can preserve the interpretability of

the model.

6 Summary and Conclusions

At three of the four sites analyzed here, estimated sulfate concentration in

precipitation shows a steadily decreasing trend. A constant percent-per-year
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decrease appears to be adequate to describe the trend for the period from the
late 1970’s to the late 1980’s. As further reductions in sulfur dioxide emissions
occur, it may be desirable to include a more complicated description of the
long-term trend. Gamma regression models provide a flexible way to model
sulfate concentration in a parsimonious and easily interpretable manner. While
the models require some distributional assumptions, there are no apparent
discrepancies for the four sites analyzed here. Finally, gamma regression models
can be used for applications that require fitted values or parameter estimates

on the original scale of the data.
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Table 1 Results from regression models

(a) Estimates and standard errors for gamma models

Coefficients Whiteface, NY  Ithaca, NY  College Sta., PA Charlottesville, VA
Intercept (a1) 2.895(0.127) 3.327(0.118) 3.245(0.088) 3.436(0.151)
Feb-Jan (a,) 0.331(0.127)  0.310(0.108) 0.358(0.097) 0.343(0.142)
Mar-Jan (a3) 0.624(0.115)  0.738(0.103) 0.646(0.092) 0.478(0.140)
Apr-Jan (a4) 1.026(0.118)  1.096(0.104) 1.111(0.094) 0.765(0.142)
May-Jan (as) 1.160(0.115)  1.310(0.106) 1.388(0.094) 0.798(0.141)
Jun-Jan (ag) 1.223(0.114)  1.370(0.098) 1.482(0.090) 1.070(0.141)
Jul-Jan (a7) 1.162(0.116)  1.430(0.102) 1.564(0.091) 1.108(0.135)
Aug-Jan (ag) 1.381(0.114)  1.597(0.102) 1.539(0.096) 1.109(0.137)
Sep-Jan (ag) 0.925(0.116)  1.194(0.105) 1.265(0.096) 0.927(0.149)
Oct-Jan (a1p) 0.744(0.116)  0.781(0.100) 0.819(0.089) 0.591(0.148)
Nov-Jan (a11) 0.428(0.114)  0.481(0.101) 0.588(0.091) 0.508(0.148)
Dec-Jan (a13) 0.294(0.115)  0.210(0.103) 0.347(0.090) 0.233(0.143)
log precip (bp) -0.309(0.021) -0.312(0.020) -0.280(0.015) -0.264(0.024)
temperature (b;) 0.036(0.004)  0.033(0.004) 0.045(0.004) 0.020(0.007)
u (by) -0.023(0.003) -0.010(0.003) -0.007(0.003) -0.001(0.005)
v (by) 0.014(0.008) 0.013(0.003) 0.017(0.003) 0.001(0.005)
day count (by) 0.031(0.007)  0.024(0.007) 0.023(0.006) 0.004(0.006)
yearly trend (by) | -0.032(0.008) -0.036(0.006) -0.029(0.005) -0.010(0.008)

(b) Jackknifed estimates and standard errors, gamma models
yearly trend (by) | -0.032(0.008) -0.035(0.006) -0.031(0.006) -0.011(0.010)

(c) Estimates with influential points deleted, gamma models
yearly trend (by) || -0.034(0.006) -0.036(0.006) -0.028(0.005) -0.010(0.008)

yearly trend (by)

(d) Estimates and standard errors from lognormal model

-0.038(0.007)

-0.035(0.006)

-0.028(0.006)

-0.015(0.008)



Table 2 Negative loglikelihood values for the gamma and lognormal regression

models
Model | Whiteface, NY Ithaca, NY College Sta., PA Charlottesville, VA
Gamma 3948.5 3637.1 4135.2 25104
Lognormal 3957.2 3613.3 41359 25104




List of Figures

Figure 1. Estimated wind effect for Whiteface, NY. The effect is a multiplicative
factor assuming constant wind direction and constant values for all other
covariates. North is located at 0°.

Figure 2. Long-term trend estimates when the year effect is modeled as an
unconstrained step function. Estimated effects are relative to 1977 and are

presented on the scale of the linear predictor.
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