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Abstract

This research investigates the effect of temporal aggregation in regression
models used to measure long-term trends in the wet deposition of sulfate. I propose
a set of gamma regression models that utilize precipitation and meteorological
data collected on a variety of time scales. Specifically, I examine models that
fit daily-level precipitation chemistry to daily-level meteorological covariates,
weekly-level precipitation chemistry to weekly-level covariates, and weekly-level
precipitation chemistry to daily-level covariates using historical data collected
at daily monitoring sites, with artificial aggregation to create weekly-level data.
Empirical results show that there can be small differences among the estimates
of long-term trend in sulfate deposition under the three aggregation schemes, as
well as a loss of precision with aggregation. Using a jackknifing procedure to
obtain estimates of the standard errors of the differences in parameter estimates, I
conclude that there is no significant difference in the estimation of long-term trends
using weekly-level data.

Key words: gamma regression, environmental monitoring

*Supported by the EPA Cooperative Agreement CR 819638-01 and the Na-
tional Science Foundation Grant DMS-9208758.



1 Introduction

The purpose of this research is to compare estimates of trends in sulfate deposition
from models that incorporate precipitation chemistry and meteorological covariates
on different time scales. It is motivated by recent legislation that mandates
substantial reductions in sulfur dioxide emissions at considerable costs, and thus
highlights the need for more accurate measurements of the impact of emissions
reductions (NAPAP, 1993). This research is also motivated by a second public
policy issue regarding funding priorities for environmental monitoring. Until a
few years ago, precipitation monitoring in the United States included networks
that collected precipitation samples on either a daily or a weekly basis. Most of
the daily monitoring sites have been shut down, and there is limited funding to
maintain the sites still in operation. It is of interest to examine whether or not the
availability of daily level monitoring data can enhance the detection of trends in
the wet deposition of sulfate.

To improve the assessment of the relationship between emissions and depo-
sition, and to investigate the effect of having weekly precipitation monitoring
data, I propose a set of gamma regression models that utilize precipitation and
meteorological data collected on a variety of time scales. Specifically, I examine

“models that fit daily precipitation chemistry to daily meteorological covariates,
weekly precipitation chemistry to weekly-level covariates, and weekly precipitation

chemistry to daily-level covariates. In this paper, I present results only from



an empirical comparison using precipitation data from four monitoring sites in
the MAP3S network. This empirical analysis demonstrates that the temporal
aggregation of precipitation chemistry and meteorological covariates can influence
the values of the estimated trends in deposition, but the differences are not
statistically significant for the data analyzed here. Additionally, the use of weekly-
level covariates introduces only small increases in the standard error estimates
for the trend parameter. For the purpose of long-term trend measurement at
individual sites, even taking into account adjustments for meteorology, weekly-

level monitoring data appears to be sufficient.

2 Model Formulation

Meteorological conditions influence all stages of the transport, conversion, and
deposition of sulfate. While these meteorological conditions are complex and
change constantly, it is necessary to introduce some simplifications to permit
the incorporation of meteorological information for many years of data at many
monitoring locations. For this analysis, I assume that it is minimally adequate to
incorporate meteorological information on the time scale of days—even though
local weather conditions can change drastically within a single day. Hence, I will
use a daily-level model as the standard basis for comparison.

The regression models presented in this paper are based on a type of gener-

alized linear model that I refer to as gamma regression models (McCullagh and



Nelder, 1989). Since deposition amounts are always positive and tend to have
an asymmetric distribution with a long right tail, I use the gamma distribution to
model both daily and weekly sulfate deposition. Thus, the model for daily sulfate
deposition is that S;, the sulfate deposition on day %, is gamma-distributed with
density
v —v
o=ty (2) e 520).

The expected value for the sulfate deposition on day ¢ is

pi = E(S;) = exp(x;3),

where x; includes a seasonal factor, a term to permit the estimation of long-term
trend, and daily-level meteorological covariates, including precipitation amount.
Since these models include the precipitation amount, modeling deposition is
equivalent to modeling concentration. More details about the other meteorological
covariates are provided in the appendix.

If only weekly precipitation chemistry measurements are available, a reasonable
model for wegkly deposition would be that S;, the sulfate deposition for the j th

week, is gamma distributed with mean

1j = E(S;) = exp(X;0),

where X; includes a seasonal factor, a term to permit the estimation of long-
term trend, and a weekly aggregate of meteorological covariates. Under the

parameterization that is used for generalized linear models, the sum of the daily
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depositions do not follow a gamma distribution. With this parameterization, the
“scale parameter v is not constant so the sums of the gamma variables are not
themselves gamma distributed. Hence, if the daily model is true, there is a slight
misspecification in applying the gamma assumption to the weekly monitoring
data. If standard diagnostics are applied to the weekly data, however, the gamma
distribution appears to be appropriate. Often, there is only one or two days of rain
per week, so the total deposition amounts remain skewed.

Finally, a model that uses only weekly measures of sulfate deposition, but
daily summaries of meteorology, is given by assuming that the weekly sulfate

measurements are gamma distributed with mean

I
1y = E(S) = S exol),

i=
where I; is the number of days with rain in the j** week, and daily measures of
meteorology are included in the vector x;;, consisting of meteorological covariates
forthe 7** day of rain during the ;* week, as well as components for long-term trend
and season. This model utilizes the relationship that the total weekly deposition,
S;, equals the sum of the daily depositions for each day with precipitation. Since
it is nonlinear in the systematic component after applying the logarithmic link
function, it cannot be fit using standard statistical packages for generalized linear
models. Assuming that the weekly aggregated sulfate depositions are gamma-

distributed, it can be fit by maximizing the likelihood directly. Again, with the



assumption that the daily model with constant coefficient of variation is true, the
weekly depositions are not in truth exactly gamma distributed. This model is
subject to the same misspecification as the model with only weekly summaries of

meteorology.

3 Empirical Evaluation of Aggregation Effects

Fitting similar regression models to monitoring data on different time scales should
have two basic effects. First, the underlying parameters from the daily model may
not be equivalent to the parameters in the weekly and nonlinear models, so the
parameter estimates obtained from aggregated data will not necessarily be estimates
of the true daily-level parameters. Second, temporal aggregation introduces a loss
of information. The standard errors for the parameter estimates using aggregated
data should generally be larger than the standard errors using unaggregated data.
While it is of interest to study the differences in the underlying model param-
eters directly, the goal of the research presented here is to evaluate the empirical
evidence that estimates of long-term trends in sulfate deposition depend on the
temporal scale of the monitoring data. I present results from four precipitation
monitoring sites in the Eastern United States from the Multistage Atmospheric
Power Product Pollutions Study (MAP3S) network located in Whiteface, New Y-
ork, Ithaca, New York, College Station, Pennsylvania, and Charlottesville, Virginia.

In this network, the sample bucket is changed daily during periods of intermittent



precipitation and after each episode of heavy precipitation (MAP3S, 1982). The
data span just over 12 years, from late 1976 through 1988. The reported sulfate and
precipitation values used in this analysis were obtained from the Acid Deposition
System (ADS) and include a quality control flag (Watson and Olsen, 1984). I
exclude observations that failed the ADS quality control checks.

Although precipitation data collected in MAP3S network are not strictly daily-
level observations, for convenience I call them daily-level samples in this analysis
and use daily meteorological summaries that correspond to the day that the sample
bucket was removed. I then artificially aggregate the precipitation data to obtain
weekly-level aggregates. Differences in the parameter estimates and standard error
estimates will be evaluated as evidence of the effect of temporal aggtegation. Since
one goal of this analysis is the improvement of trend detection by using regression
models to account for known sources of variability, it is of interest to know if the
unavailability of daily monitoring data will diminish the effectiveness of this use
of regression analysis.

Table 1 shows the estimated long-term trend parameters and standard errors for
the four stations in the MAP3S network using the three models described above,
converted to an estimated percent-per-year change in deposition. For illustration,
estimates for the other covariates in the regression models at Whiteface, New York,
are listed in the appendix. At the first three sites, all three of the models suggest

a significant decrease in sulfate deposition, with a typical reduction of about three



percent per year. There is a consistent negative trend at the Virginia site, but it is not
significantly different from zero in any of the models. Generally, the differences
between the estimates from the nonlinear models and daily models are smallér than
differences between the weekly and daily models. The standard errors increase as
the level of data aggregation increases. They are uniformly smallest for the daily
models, with no aggregation, and largest for the weekly models, where both the
covariates and the precipitation chemistry are aggregated.

To investigate the significance of the differences in the trend estimates between
the daily and weekly models, and to remove the effect of any possible short term
autocorrelation, I calculated jackknifed estimates and standard errors leaving out
data in blocks of one-month periods. The jackknifed estimates for the trend
parameters, listed in Table 2, are very similar to the usual estimates obtained
without jackknifing. The jackknifed standard errors are slightly larger than the
standard errors calculated from the usual asymptotic covariance matrix listed in
Table 1. More importantly, though, jackknifing provides a way to estimate the
standard errors for the differences in the estimates from the daily and weekly
models. The final column of Table 2 shows the jackknifed differences and standard
errors, permitting a formal comparison of the trend estimates from the two models.
None of the differences are significantly different from zero. This result also holds
when the jackknife standard errors are calculated by leaving data out in blocks of

individual years and four-month seasons.



4 Summary and Conclusions

This research is motivated by the need to understand the implications of restricting
precipitation monitoring efforts to weekly-level sampling protocols. Specifically,
I investigate how temporal aggregation can influence the estimation of the effect
of reductions in sulfur dioxide emissions. I fit models incorporating measures of
season, meteorological covariates, and emissions to precipitation data and compare
the empirical estimates of the parameters and standard errors. This empirical inves-
tigation shows that there can be small differences between the parameter estimates
and standard errors in the unaggregated and aggregated processes. When estimates
of standard errors are included in the analysis, there is no significant difference in

trend estimates among the models using different levels of aggregation.

5 Appendix

The regression models include metéorological covariates measuring temperature
and wind conditions. As suggested in other studies, I use 850 millibar wind
measurements, selected to be concurrent with the precipitation event, as potential
measures of both transport and local weather conditions (Styer and Stein, 1992).
The wind data used here are from a subset of the National Meteorological Center
(NMC) gridded upper air data (Atmos. Sci., Univ. of Wash., 1990). The particular
data set employed has a grid resolution of two degrees latitude by four degrees

longitude, so I selected the grid point closest to the monitoring site. Information



about wind is incorporated using the zonal (U) and meridional (V') components,
which provide information about both wind speed and direction.

The regression equations also include a measure of seasonally adjusted temper-
ature, represented by T'. In this analysis, the temperature variable is also extracted
from the 850 millibar measurements using NMC gridded upper air data. For each
MAP3S site analyzed, I used the 850 millibar temperature measurements from the
closest grid point, taken to be the measure of daily temperature for that precipitation
event. Specifically, I calculate T; as the daily temperature for the i** precipitation
event minus the average daily temperature for the month during which the 5t?
precipitation event began. The average daily temperatures for each month are
estimated from all of the years for which monitoring data are available.

In addition to the temperature and wind covariates, I also include a covariate
showing the number of days since the last precipitation event (D). Since pre-
cipitation activity cleanses the air of pollutants, sulfate concentration should be
lower during periods of frequent precipitation episodes and should increase as
the time span between precipitation episodes increases. And finally, I include an
index variable corresponding to year to provide an estimate of long-term trend
in deposition. The yearly index variable is represented by Y in the regression
equation.

The full specification of the daily-level regression model is the following: daily
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sulfate concentration is assumed to be gamma-distributed with mean

12
pi = expla; + Z amMm; + by log P; + b,U; + b, V;

m=2
+b:T; + bgD; + b,Y3),
where, for the ith precipitation event, M,,; is an index variable for the month
in which the precipitation event begins, P; is the total precipitation amount in
millimeters, U; and V; are the zonal and meridional components of wind, T; is a
measure of temperature in degrees Celsius, D; is the number of days since the last
precipitation event, and Y; is the index variable for year.

For the weekly-level model, it is necessary to create weekly-level measures
of the meteorological covariates. Here, I used the total weekly precipitation
and the mean weekly temperature. For the wind components, I used the wind
measurements corresponding to the day of the week with the greatest amount of
precipitation. For the day count, I took the first day of the week with rain and
counted the number of days since the previous precipitation event. I also included
an additional covariate, labeled nday, counting the number of days in the week
with precipitation. The monthly and yearly index variables were also coded using
the date of the first precipitation event of each week. For the nonlinear model,
the daily-level meteorological covariates are used in conjunction with the weekly-
level precipitation chemistry. The daily and weekly models are fit using the glm
function in the S language (Chambers and Hastie, 1993). For the nonlinear model,

I use the function ms and obtain parameter estimates by maximizing the assumed
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likelihood function directly.
The estimates for the three models are listed in Table 3. For a discussion of the

interpretation of these parameters, see Styer(1994).
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Table 1

Estimates and Standard Errors for Long-Term Trend

Percent per Year Change in Deposition

Site Daily Weekly Nonlinear

Whiteface, NY -3.17 (0.69) | -3.28 (0.82) | -3.10 (0.75)
Ithaca, NY -3.63 (0.65) | -4.39 (0.72) | -4.11 (0.68)
College Station, PA || -2.90 (0.51) | -2.60 (0.66) | -2.72 (0.62)
Charlottesville, VA || -1.05 (0.82) | -0.67 (0.92) | -0.68 (0.83)




Table 2
Jackknifed Estimates of Trends and Differences

Site Daily Weekly Weekly-Daily
Whiteface, NY -3.22(0.78) | -3.38 (0.90) | -0.15(0.55)
Ithaca, NY -3.58 (0.66) | -4.34 (0.70) | -0.77 (0.42)

College Station, PA | -3.17 (0.66) | -2.90 (0.75) | 0.26 (0.51)
Charlottesville, VA | -1.10 (1.00) | -0.82 (1.07) | 0.28 (0.42)




Table 3
Estimates and Standard Errors for Regression Coefficients at Whiteface, NY

Coefficients Daily Model | Weekly Model | Nonlinear Model
Intercept (a1) 2.895(0.127) | 3.013(0.147) 2.946(0.133)
Feb-Jan (a;) 0.331(0.127) | 0.407(0.134) 0.418(0.124)
Mar-Jan (a3) 0.624(0.115) | 0.708(0.122) 0.685(0.112)
Apr-Jan (a4) 1.026(0.118) | 1.000(0.127) 1.032(0.118)
May-Jan (as) 1.160(0.115) | 1.238(0.125) 1.291(0.114)
Jun-Jan (as) 1.223(0.114) | 1.268(0.128) 1.274(0.117)
Jul-Jan (a7) 1.162(0.116) | 1.264(0.128) 1.282(0.117)
Aug-Jan (ag) 1.381(0.114) | 1.437(0.127) 1.467(0.117)
Sep-Jan (ag) 0.925(0.116) | 1.062(0.127) 1.050(0.117)
Oct-Jan (a10) 0.744(0.116) | 0.815(0.127) 0.808(0.115)
Nov-Jan (a11) 0.428(0.114) | 0.560(0.124) 0.572(0.114)
Dec-Jan (a12) 0.294(0.115) | 0.417(0.126) 0.331(0.116)
log precip (bp) 0.691(0.021) | 0.641(0.030) 0.656(0.027)
temperature (b;) || 0.036(0.003) | 0.033(0.005) 0.033(0.006)
u (by) -0.023(0.003) | -0.012(0.002) -0.021(0.004)
v (by) 0.014(0.008) | 0.012(0.002) 0.014(0.004)
day count (bg) 0.033(0.008) | 0.012(0.008) 0.024(0.009)
nday (b,,) 0.147(0.033)
yearly trend (by) || -0.031(0.006) | -0.032(0.008) -0.031(0.007)




