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Predicting fault incidence using software change

history
Todd L. Graves, Alan F. Karr, J. S. Marron, Harvey Siy

Abstract|This paper is an attempt to understand the pro-

cesses by which software ages. We de�ne code to be aged

or decayed if its structure makes it unnecessarily di�cult

to understand or change, and we measure the extent of de-

cay by counting the number of faults in code in a period

of time. Using change management data from a very large,

long-lived software system, we explore the extent to which

measurements from the change history are successful in pre-

dicting the distribution over modules of these incidences of

faults. In general, process measures based on the change

history are more useful in predicting fault rates than prod-

uct metrics of the code: for instance, the number of times

code has been changed is a better indication of how many

faults it will contain than is its length. We also compare the

fault rates of code of various ages, �nding that if a module is

on the average a year older than an otherwise similar mod-

ule, the older module will have roughly a third fewer faults.

Our most successful model measures the fault potential of

a module as the sum of contributions from all of the times

the module has been changed, with large, recent changes

receiving the most weight.

Keywords| Fault potential, code decay, change manage-

ment data, metrics, statistical analysis, generalized linear

models.

I. Introduction

A
S large software systems are developed over a period
of several years, their structure tends to degrade, and

it becomes more di�cult to understand and change them.
Di�cult changes are excessively costly, or require an ex-
cessively long interval to complete. In this paper we con-
centrate on a third manifestation of \code decay:" when
changes are di�cult in the sense that excessive numbers
of faults are introduced when the code is changed. As the
system grows in size and complexity, it may reach a point
such that any additional change to the system causes, on
the average, one further fault, at which point, the system
has become unstable or unmanageable [1]. This paper is
devoted to identifying those aspects of the code and its
change history that are most closely related to the num-
bers of faults that appear in modules of code. (In this
paper, the term \module" is used to refer to a collection
of related �les.) Our most successful model computes the
fault potential of a module by summing contributions from
the changes (\deltas") to the module, where large and/or
recent deltas contribute the most to fault potential.
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We use only information available on 3/31/94 in our
models, and these models predict number of faults that
appeared between 4/1/94 and 3/31/96. We �nd that the
change history contains more useful information than we
could have obtained from product measurements of a snap-
shot of the code. For example, numbers of lines of code in
modules are not helpful in predicting numbers of future
faults once one has taken into account numbers of times
modules have been changed. This implies that many soft-
ware complexity metrics are also not useful in this context,
because within our data set these metrics are very highly
correlated with lines of code.

A measure of the average age of the lines in a module
can also help predict numbers of future faults: in our data,
roughly two-thirds as many faults will have been found in
a module which is a year older than an otherwise similar
younger module.

In addition to size, other variables that do not improve
predictions are the number of di�erent developers who have
worked on a module, and a measure of the extent to which
a module is connected to other modules.

After discussing the variables available in our data and
their peculiarities in xII, and then describing some of the
statistical tools that we will be using in xIII, we present
our models of fault potential | that is, the distribution of
faults over modules | using data available at the beginning
of the prediction interval in xIV.

A. Software fault analysis.

Previous work in software fault modeling can be classi-
�ed into prediction of number of faults remaining in the
system and accounting for the number of faults found in
the system.

Most of the work on prediction is done in connection with
software reliability studies in which one �rst estimates the
number of remaining faults in a software system, then uses
this estimate as a predictor of the number of faults in some
given time interval. (See Musa, et al. [2] for an intro-
duction to software reliability.) Classic models of software
faults [3,4] are discussed in a survey of the early work on
measuring software quality by Mohanty [5] which has a sec-
tion on estimation of fault content. There are also many
recently proposed models [6,7]. These models estimate the
number of faults that are already in the software. Our
work di�ers from these studies in that we assume new faults
are continuously being added to the system as changes are
made.

Our research is similar to previous empirical studies of
software faults, e.g., [8,9,10,11], where the aim is to un-
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derstand the nature and causes of faults. In these studies,
explanatory variables are identi�ed in order to account for
the number of faults found. Our work extends this by at-
tempting to understand how the process of software evo-
lution could have an e�ect on the number of faults found
over time. In several of the cited studies, no actual model
is articulated. Our goal is to build fault models based on
these explanatory variables that are reasonably accurate
and interpretable.

Below we list some of the factors, cited in previous work,
which were thought to be predictors of number of faults.
These factors can be classi�ed into two groups: product-
related and process-related measures. Within each group,
we will list the measurements in that group that we used to
try to predict fault potential, and describe how successful
these measurements were.

B. Product measures.

Product measures can be computed using syntactic data
taken from a snapshot of the software. These include, for
example, code size (lines of code) and degree of statement
nesting. Several studies have shown that large modules
have lower defect densities than small modules [8,9]. Hat-
ton [10] reports that the decrease in defect densities is not
linear but is U-shaped, implying that there are medium-
sized components that have lower defect densities than
large components which in turn have lower defect densi-
ties than small components. Other studies have found that
modules with a high amount of nesting also tend to have
more defects [8].

Other product measures are measures of code complex-
ity, like McCabe's cyclomatic complexity [12] and Hal-
stead's program volume [13]. Schneidewind and Ho�man
[14] compared several measures of complexity, among them
cyclomatic complexity, number of acyclic execution paths,
and number of ways to reach a program block, and found
that, regardless of the complexity measure, programs with
high complexity have high number of faults and similarly,
programs with low complexity have low number of faults.
In a study to identify fault-prone modules in a telecom-
munication system, Ohlsson and Alberg [15] found that
modules with high cyclomatic complexity are likely to have
more faults. Shen, et al. [16] and Munson and Khoshgof-
taar [17] found that Halstead's �1 (number of operators)
and �2 (number of operands) are the best indicators among
Halstead's other metrics and better than cyclomatic com-
plexity.

The product measures we study in this paper include

� lines of code (both commentary and noncommentary
lines) at the start of the prediction interval,
� other complexity metrics, computed using an in{house
complexity metric tool.

Our own investigation into these measures showed that
each one was highly correlated to lines of code which (if
change history is available) is not a very good predictor of
faults.

C. Process measures.

Process measures are computed using data taken from
the change and defect history of the program. The sim-
plest measure classi�es modules as new or modi�ed code:
Basili and Perricone [9] found, for example, that new and
modi�ed modules behaved similarly except for the types
of faults found in each and the e�ort required to correct
errors.
Another measure cited in literature is the number of de-

fects already found in each module. Yu, et al. [11] found
that modules with histories of large numbers of defects are
likely to continue to be faulty.
Some other related work has concentrated on predict-

ing the numbers of faults that remain in software part way
through a corrective maintenance phase. One such tech-
nique measures the amount of overlap in defects found by
di�erent people during a code inspection [6]: the higher the
overlap, the less likely is a module to have more defects.
Christenson and Huang [7] performed a study to predict
the number of remaining faults by counting \�x-on-�xes"
(fault �xes that become faults themselves): the fewer faulty
bug �xes detected, the less likely is a module to have more
defects.
We use several additional novel measures derived from

the change history of the software to predict the number
of faults. Descriptions of these measures follow.
� Number of past faults. Our \stable" model predicts the
number of faults to be found in a module in the future to
be a constant multiple of the number of faults found in
a period of time in the module. We used this model as
a yardstick against which to compare other models, and
we found that it was challenging to improve upon it. A
potential reason for a module to have contained a large
number of faults in the past is that it was tested more
rigorously than other modules, in which case it might be
expected that it would be relatively fault-free in the future.
Our data did not contain information about testing e�ort
across modules; in any case the success of the stable model
would tend to indicate that di�erent testing intensities were
not an important factor.
� Number of deltas to a module over its entire history. The
number of changes to code in the past was a successful
predictor of faults, clearly better than product measures
such as lines of code. A module's expected number of faults
is proportional to the number of times it has been changed.
� A measure of the average age of the code, calculated
by taking a weighted average of the dates of the changes
to the module, weighted by the size of the changes. This
measure, when combined with number of deltas, greatly
improved the �t of the model, to the point where it is as
good as the stable model and possibly slightly better.
� The development organization that worked on the code.
The code we study was developed by two organizations that
de�ne numbers of faults in di�erent ways, and this required
us to put a nuisance parameter in the model. See II-A for
details.
� The number of developers who have made deltas on the
module. Perhaps surprisingly, there was no evidence that
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a large number of developers working on a module caused
it to be more faulty.
� The extent to which the module is connected to other
modules, as measured by the typical number of other mod-
ules changed together with the module, also did not appear
to be important in our models, although we expected that
large numbers of interfaces would be characteristic of code
that is di�cult to change correctly.
� A weighted time damp model, which computes a module's
fault potential by adding contributions from each change
to it, with a change contributing a lot of fault potential if it
is large and recent. This was the most successful model we
located. This model allowed us to conclude that the rate
at which changes' contributions to fault potential disappear
with time is about 50% a year.

II. Change management data

In this paper we study the code from a 1.5 million line
subsystem of a telephone switching system. We predict
the incidence of faults in each of eighty modules in the
subsystem. A few hundred developers changed the code
a total of roughly 130,000 times. We predict numbers of
faults in a two-year period from various data.
The data came from two sources: an Initial Modi�cation

Request (IMR) database and a delta database. (An IMR
is the o�cial record of a problem to be solved. Solving an
IMR will typically lead to several modi�cation requests, or
MRs, which are assigned to speci�c developers. MRs typ-
ically consist of several deltas, each of which is an editing
change to a single �le.)

A. IMR database.

The IMR database lists, for each IMR, the date that the
request was �rst made (\open date"), the date that the last
delta associated with that IMR was completed, the person
who originated the IMR, whether the IMR was classi�ed
by the originator as \bug" or \new" (a bug �x or a new
feature, respectively), and a list of the modules changed as
a result of the IMR.
To understand the IMR data, it is helpful to know the

development process followed by the software organization.
The software organization is composed of two nearly au-
tonomous organizations, one maintaining a domestic (US)
version of the product and the other maintaining an inter-
national version. For the most part, the processes followed
by the two are similar. (There are certain di�erences that
we will point out.)
Features are the fundamental unit of development. In

other words, developers are always doing development
work, going from one feature to another. Requests for new
features are sent to the software organization as sets of
IMRs classi�ed as \new" IMRs. Working on an IMR in-
volves the usual engineering activities of requirements spec-
i�cation, design, and coding. The artifacts of requirements,
design and coding are subjected to formal reviews and in-
spections. After that, the features are unit tested, and
then submitted to the integration team which builds the
various features into a software release. The features are

then subjected to integration and regression testing. Prob-
lems uncovered in the reviews and inspections are �xed as
part of the work for the original IMR. The exception is
if the issue raised is not directly relevant or required for
this feature, it is documented as future work through an-
other \new" IMR. This procedure also holds for problems
found in testing and integration within the organization
maintaining the domestic product. For international de-
velopment, problems uncovered during the integration and
testing stages are documented as \bug" IMRs and sent
back to the developer who wrote the code. Finally, prob-
lems found in the �eld are reported back to both develop-
ment organizations as \bug" IMRs. The di�erence between
the two organizations' bug reporting procedures leads to a
large discrepancy in the fault rates of modules developed
by the two organizations, because the international organi-
zation would report an average of four faults for a problem
that would only prompt one fault report for the domestic
organization.
We restricted our study to the IMRs classi�ed as bug

�xes, and de�ned our response variable to be the number of
bug IMRs which touched a given module, and whose open
dates were in the period 4/1/94 through 3/31/96. During
this period, there were more than 1500 IMRs that were
classi�ed as fault �xes. Of these, 15% were faults reported
in the �eld while the rest came from various releases still
under development. (At any given time, the development
organization manages several active releases. Some of these
releases are still in development while others are in the
�eld.) Figure 1 contains a plot of the density of fault IMRs
in time for a single module (the module which had the most
faults in the prediction interval).
A potential weakness of this choice of response variable is

that IMRs classi�ed as bugs may not always reect faulty
software: for instance, if code is changed after it is re-
leased because it failed to include some desired feature,
the changes are classi�ed as bugs even if the code performs
perfectly outside the missing feature.
The IMR data set was also used to construct the \stable

model" discussed in xIV with which we predict future fault
IMRs using past fault IMRs; this model serves as a point
of reference for other models.

B. Delta database.

The source code for this system is under change control
using SCCS [18]. There is a change management database
to keep track of the set of deltas associated with each
IMR. This change management database records several
attributes of the deltas, including the date (to the second)
of the change; the names of the module and �le within
the module that are changed (each delta can a�ect only
one �le); the numbers of lines added, deleted, and left un-
changed in the �le by the delta; the identity of the de-
veloper making the change, and an identi�er to link to the
IMR. This change management database is the basis of our
second data set, from which we drew most of the measure-
ments used as independent variables. From this data set
we computed such quantities as the length in lines of code
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Fig. 1. Density of faults per year for the most faulty module

of the modules at the beginning of the prediction interval.

C. System Characteristics.

The system we studied is a legacy system, with at least
one version released every year. Much of the code is writ-
ten in C, but about half the modules contain �les written
in a domain-speci�c language. Several di�erent versions of
the code can exist at the same time, because MRs may be
applied to some versions but at least not immediately to
others. For example, the subsystem we studied is released
in dramatically di�erent versions to domestic and interna-
tional customers: of the eighty modules, roughly twenty
are included in the international package alone, thirty are
included in only the domestic package, and thirty \com-
mon" modules are included in both. The domestic code
(for example) is released in a di�erent form every year.
We did not explicitly include these considerations in our
models, except to allow fault potentials of modules to dif-
fer depending on whether they are part of the domestic or
international packages or both.

D. The modules.

Of the subsystem's roughly 100 modules (themselves col-
lections of �les) roughly twenty were removed from our
analyses for various reasons (for example, if they contained
only header and make �les). Two modules not yet in exis-
tence at the beginning of the prediction interval were also
removed; predicting faults in these modules could be done
using, for example, [15], which employs software complex-
ity metrics calculated from design documents.
The remaining 80 modules had a total of about 2500 �les

(between 3 and 155 apiece). The modules contained about
1.5 million lines at the beginning of the prediction interval,
with the smallest module containing about 1000 lines and
the largest about 100,000. Before the prediction interval,
the eighty modules were touched by between 30 and 7000
deltas apiece. Eighteen of the modules were fault-free in
the prediction interval, while four modules were a�ected
by more than a hundred fault IMRs. The total number of
fault IMRs is more than 1500. Figure 2 contains histograms
of the numbers of faults in the modules in the prediction
interval, the lengths in lines of the modules at the start of

the prediction interval, and the numbers of deltas to the
module before the start of the prediction interval.

III. Statistical tools

In this section we present some of the statistical tech-
niques we used to perform these analyses. The modeling
was done using generalized linear models as described in
III-A. Our choice of parametric family to use led to some
complications and forced us to use simulation to assess the
amount of uncertainty in our estimates; see III-B.

A. Generalized linear models.

Generalized linear models (GLMs) [19] extend the ideas
of linear regression. Whereas linear regression assumes that
the expected value of a response variable is a linear func-
tion of one or more predictors, and works best if the er-
ror distribution is nearly normal and if the variances of
the observations do not depend on the means, in GLMs, a
function (the \link" function) of the mean is linear in the
predictors, and other error distributions, such as Poisson,
are allowed.
In our analyses we used a logarithmic link and took the

error distribution to be Poisson. (In this paper, logs are
always base e.) This means that if we predict number of
faults using the log of the number of lines of code in the
module, then the number of faults has a Poisson distribu-
tion with mean equal to a constant multiple of some power
of the number of lines.
One way of looking at what a generalized linear model is

doing is by considering the error measure it uses. Since the
numbers of faults in the modules di�er by orders of mag-
nitude, one should take care in choosing an error measure
for evaluating the quality of a model. It is critical that
neither large modules nor small modules have an inordi-
nate e�ect on our evaluation of a model. We found that
for a model predicting numbers of faults y1; : : : ; yn using
predictors e1; : : : ; en, the error measure

nX

i=1

(ei � yi) +
X

i:yi>0

yi log(yi=ei); (1)

a�orded a compromise between the greater importance of
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Fig. 2. Histograms of various quantities for the modules under study. Left: histogram of base-10 log(1+number of faults). Center: log (base
10) of lengths of modules as of the beginning of the prediction interval. Right: log (base 10) of numbers of deltas to the modules before
the prediction interval.

large modules and their greater variability. This error mea-
sure is the deviance function for the Poisson distribution
(that is, the estimated parameters minimize this function).
By contrast, the least squares method would put too large
a preference on models that did a good job of predicting
the numbers of faults in unusually faulty modules. (In fact,
the numbers of faults in our data are better described as
having gamma distributions, because their standard de-
viations tend to be proportional to their means, whereas
Poisson modeling assumes that variances are proportional
to means. Nevertheless, using the Poisson error measure
provided a better tradeo� between the greater importance
and greater variability of faulty modules.)

B. Simulations to assess signi�cance.

To assess the amounts of uncertainty in parameter esti-
mates and the statistical signi�cance of di�erences between
error measures of pairs of models, we ran simulation experi-
ments. For example, suppose that we have �t a model with
number of deltas and line age as predictor variables, and
that we wish standard error estimates for the coe�cients,
as well as to address whether length in lines adds mate-
rially to the model. To do this, we generated synthetic
numbers of faults according to gamma distributions with
means given by the model with deltas and age, and with
common shape parameters estimated from the data. We
then computed the deviance for a model with deltas and
age �t to the synthetic data, and subtracted this deviance
from the deviance for a model with deltas, age, and lines.
We also recorded the estimated parameters from the sim-
ulated data. After repeating this process a large number
(2000) of times, we can compute the standard deviation
of the estimated parameters from simulated data, and use
this as an estimate of the standard error in the parameters
estimated from the data. Also, we can count the number of
times that the di�erence in deviance in the simulated data
exceeded the change in deviance that the lines variable was
responsible for in the data.

IV. Results

In this section we present various models of modules'
fault potential. First we discuss the stable model, which
predicts numbers of future faults using numbers of past
faults. Next we list our most successful generalized linear
models, which construct predictors in terms of variables
measuring the static properties of the code or comprising
simple summaries of the change history; these variables are
listed in I-B.

A. Stable model.

This model simply predicts fault IMRs for each module
in the two-year period beginning 4/1/94, to be propor-
tional to the number of fault IMRs in that module during
the two-year period ending 4/1/94. We refer to it as the
stable model because it assumes that the fault generation
dynamics remain stable across modules over time. This
model provides no insight, since it does not explain causes

of faults, but it serves as a yardstick against which to com-
pare other models. Improving upon it turns out to be fairly
di�cult, however, because it implicitly incorporates e�ects
for many of the predictors that might be used. After count-
ing the fault IMRs for each module between 4/1/92 and
4/1/94, we renormalized the counts to have the same sum
as the observed faults in the target interval, leading to an
error (using (1)) of 757.4.

B. Generalized linear models.

In all of our generalized linear models, we allowed three
di�erent intercepts | for international, domestic, and com-
mon modules. All other things being equal, international
modules have four times as many fault IMRs as domestic
modules while common modules have twice as many as do-
mestic. This does not, however, mean that international
code is more likely to contain faults, because of organiza-
tional di�erences in reporting practices: the international
organization is known to report more IMRs for a given
number of faults.
Table I lists the results of several di�erent models for the

log of the expected number of faults between 4/1/94 and
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4/1/96. The predictor variables include log(lines=1000),
the log of the number of thousands of lines of code in the
module on 4/1/94, comments included; log(deltas=1000),
the (log of the) number of thousands of deltas to the module
before 4/1/94; and age, which measures the average age
of the code in the module. Suppose that the deltas to
the module occurred at dates d1; : : : ; dn, measured in years
before 1990, and that the numbers of lines added to the
module by these deltas are a1; : : : ; an respectively; then

age =

Pn

i=1 aidiPn

i=1 ai
:

Lines and deltas are measured in thousands, and age in
years before 1990, so that the intercept terms are of com-
parable orders of magnitude. Note that the log transforma-
tion of lines and deltas allows estimation of which power of
these quantities best predicts numbers of faults, while age
enters the model in an exponent, so that we may ascertain
the rate at which expected numbers of faults increase or
decrease in the absence of new changes.

Each row of the table lists the form of the model (which
variables it includes), the intercept, and the adjustment to
the intercept necessary for the three organizational vari-
ables (modules changed by both the international and do-
mestic organizations, those changed only by international,
and those changed only by domestic). The parameteriza-
tion of the model de�ned the adjustment to be zero for the
common modules. The �nal column shows the error mea-
sure associated with the model. The \Null" model predicts
that every module will contain the same number of faults.
The next model in the table, \Organization only," allows
number of faults to di�er depending on international, do-
mestic, or both, but admits no other predictors. For in-
stance, model F says that a common module with 5000
deltas is predicted to have

expf1:05 log(5000=1000)+ 2:95g = 104

faults during the period of interest. Similarly, model H
predicts that a \US" module with 500 deltas and an average
age of one year before 1990 will have

expf1:02 log(500=1000)� 0:44� 1 + 2:87� 0:63g = 7

faults.
Several things stand out from the table. First, deltas are

a much better measure of fault likelihood than lines, and
second, once deltas have been taken into account, lines are
not capable of improving the prediction. The contribu-
tions of deltas and age, however, appear to be quite impor-
tant. The standard errors of the �ve coe�cients in the last
(deltas and age) model are respectively 0.17, 0.13, 0.19,
0.33, and 0.37; these were estimated using the simulation
methodology discussed in III-B. The coe�cients of deltas
are not statistically signi�cantly di�erent from one, which
means that expected numbers of faults are proportional to
numbers of deltas. The coe�cient of -0.44 for age means
that if one module's changes occurred a year earlier than

those of another module with the same number of deltas
and in the same branch, the older module will tend to have
only exp(�0:44) � 0:64 as many faults. This �nding is
consistent with our expectation that code which survives a
long time is likely to be well-written.
To assess the statistical signi�cance of di�erences be-

tween error measures of pairs of models, we ran a simu-
lation experiment. We generated 2000 di�erences in de-
viances as in III-B and compared them to the value of
697:4 � 696:3 = 1:1 for the real data. Of the 2000 sets
of synthetic data, 1713 of them (86%) had larger deviance
di�erences than 1.1, so the improvement in the �t that the
lines variable contributed in our data is small compared
to the amount of natural variability in the problem. Thus
the data are consistent with a situation where lines add no
predictive power beyond deltas and age.
It is less straightforward to answer the question of

whether the model with deltas and age is better than the
stable model, but we can use similar simulations to get
some idea of what constitutes a large di�erence in de-
viances. Of the 2000 sets of simulated data, 284 had dif-
ferences of 757.4 - 697.4 = 60 or more, suggesting that the
di�erence between the stable model and the model with
deltas and age is within the range of natural variability.
Rather than the negative conclusion that the model with
deltas and age fails to improve the stable model, we inter-
pret this to mean that a model suggesting causality (deltas
cause faults) has the same explanatory power as (in e�ect)
a model positing simply that the distribution of faults over
modules is stationary over time.

C. Other potential predictors.

One might wonder whether software complexity metrics
(see, for example, [20]) are useful predictors of faults. We
computed a number of metrics on the code as of 4/1/96,
including noncommentary source lines (NCSL), McCabe's
single and full complexities [12], the numbers of functions,
function calls, breaks and continues, unique operands and
operators, total operands and operators; Halstead's pro-
gram level, volume, di�culty, e�ort, and expected length
[13]; and the mean and maximum spans of reference. (The
results di�er only slightly from the comparable values as
of 4/1/94, and were computed much more readily.) To
get measures of complexity for modules, in most cases we
added over all the �les in the module.
We found that nearly all of the complexity measures were

virtually perfectly predictable from lines of code. (This
analysis has excluded modules which contain only header
and make �les, and presumably such modules would be
very di�erent in their complexities per line of code.)

This �nding agrees in general with [15], in which most of
the metrics with high correlations to faults had correlations
of 0.9 or greater with each other. A notable exception in
[15] was SigFF, a measure of how many signals a module
sent to and received from other modules.
The failure of lines of code to be a useful predictor implies

the same of the other complexity metrics. In fact, even
using lines of code instead of non-commentary source lines
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TABLE I

Models fit to fault data.

Model Intcp Common Intl US Error
(A) Stable - - - - 757.4
(B) Null model - - - - 3108.8
(C) Organization only 3.46 0 -0.13 -1.39 2587.7
(D) 0:84 log(lines/1000) 0.92 0 0.17 -0.92 1271.4
(E) �0:14 log(lines/1000) + 1:19 log(deltas/1000) 3.31 0 0.46 -0.70 980.0
(F) 1:05 log(deltas/1000) 2.95 0 0.43 -0.72 985.1
(G) 0:07 log(lines/1000) + 0:95 log(deltas/1000) - 0.44age 2.63 0 0.73 -0.65 696.3
(H) 1:02 log(deltas/1000) - 0.44age 2.87 0 0.74 -0.63 697.4

TABLE II

Correlations of complexity metrics

1 2 3 4 5 6 7 8 9 10 11 12
1 Lines Of Code 1 .97 .88 .88 .91 .99 .98 .92 .97 .85 .72 .35
2 McCabe V(G)1 .97 1 .88 .90 .88 .95 .95 .89 .93 .86 .76 .29
3 Functions .88 .88 1 .82 .89 .85 .84 .91 .84 .76 .65 .29
4 Breaks .88 .90 .82 1 .83 .86 .85 .85 .85 .78 .67 .27
5 Unique Operators .91 .88 .89 .83 1 .89 .87 1.00 .94 .65 .47 .48
6 Total Operands .99 .95 .85 .86 .89 1 1.00 .90 .98 .85 .72 .31
7 Program Volume .98 .95 .84 .85 .87 1.00 1 .88 .97 .87 .74 .28
8 Expected Length .92 .89 .91 .85 1.00 .90 .88 1 .94 .69 .53 .42
9 Variable Count .97 .93 .84 .85 .94 .98 .97 .94 1 .77 .60 .38
10 MaxSpan .85 .86 .76 .78 .65 .85 .87 .69 .77 1 .92 -0.10
11 MeanSpan .72 .76 .65 .67 .47 .72 .74 .53 .60 .92 1 -0.25
12 Prog Level .35 .29 .29 .27 .48 .31 .28 .42 .38 -0.10 -0.25 1

does not impair the model performance. Within our data
set, the correlation of log(1+total lines) and log(1+NCSL)
was 0.9954.
Neither do unusually large values of complexity metrics

relative to lines of code help predict how many faults a
module has beyond typical modules with similar numbers
of deltas: we compared ratios of metrics to NCSL (for the
code on 4/1/96) to the residuals from the GLM model and
found no relationship.
We also tried relating the residuals from these models

to other variables we thought might be related to fault
potential. One hypothesis was that if a large number of
developers had worked on a module beyond what the size
and age of the module would predict, the code might be
confused and therefore likely to contain faults. However,
the number of developers was unrelated to the residuals,
as was developers/deltas.
Also, developers with whom we are working believe that

modules are complicated if they communicate with many
other modules. We tried to measure this for a given module
by taking the average number of other modules that were
touched by MRs touching the module. This measure was
also unrelated to the residuals, but we feel it is promising
to consider other measures of connectivity based on the
logical structure of the code.

D. Weighted time damp model.

Models that estimate a module's fault potential by
adding an explicit contribution from each MR to the mod-

ule are better than all of the previous models. In these
models, an MR contributes a large amount of fault po-
tential if it is large, or if it is recent. Old changes either
will have been �xed, or will have been demonstrated to be
fault-free.
These models begin by predicting the proportion of

the total faults that given modules will have. We write
(e1; : : : ; e80) as the unnormalized �tted fault potentials for
the eighty modules, denote the times of the M MRs by
T1; : : : ; TM , and the current time by t. Then the models
all have the form

ei =

MX

m=1

e
��(t�Tm)wim /

MX

m=1

e
�Tmwim (2)

where wim is the weight to the ith module corresponding
to the mth MR. This model is qualitatively similar to the
GLM with deltas and age, as it predicts high fault poten-
tials for models with many recent deltas.
Several choices of the w's were examined, including

wim = 1 if mth MR touches ith module, 0 otherwise;(3)

wim = number of lines changed as part of this MR; and(4)

wim = log(number of lines changed as part of this MR):(5)

Lines changed is actually computed for a delta by adding
the number of lines added to the number of lines deleted
for that delta. A line is changed by deleting it and adding
a replacement. Lines changed for an MR is the sum of
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lines changed over deltas within that MR. We also tried
replacing numbers of lines changed by numbers of deltas in
the weighting schemes, but we have had the most success
with weighting (5), since it seems essential to take logs of
quantities like lines or deltas when �tting models of this
form.

The parameter � in (2) governs the rate at which the
contribution of old MR's to the fault potential disappears.
If � is large, only recent changes matter. On the other
hand, the combination � = 0 and wim as in (3) is very
close to model F in xIV-B, except that here we count MRs
rather than deltas.

After evaluating the ei's we renormalize them so that
the sum of the predicted numbers of fault IMRs for the
international modules is the same as the sum of the ob-
served numbers of faults. We then repeat this process for
the domestic and common modules.

We chose the log(lines) weighting scheme of (5). Mini-
mizing the error measure over � leads to � = 0:75 with an
error measure of 631.0. This means that a change which is
a year older than another change of the same size is only
half as inuential with respect to increasing fault potential
since exp(�0:75) = 47%. This is similar to the coe�cient
of 64% �t in generalized linear model H above. The result-
ing error measure, 631.0, is slightly better than the 697.4
achieved by model H in xIV-B. In the simulation experi-
ment discussed in xIII-B, only 256 out of 2000 replications
(13%) gave discrepancies larger than 66.4 = 697.4 - 631,
and only 84 out of 2000 (4.2%) were larger than the dif-
ference between the deviances of the stable model and this
model. Thus, there is strong evidence that this model is
superior to the stable model, and some evidence that it
is superior also to the GLMs. It is interesting to see that
treating changes individually as in the weighted time damp
model leads to an improvement in the predictions.

Finally, we studied predictions over a di�erent time in-
terval, namely 10/1/94, through 9/30/95, the one-year pe-
riod in the middle of the previous two-year prediction inter-
val. The stable model | this time using fault IMRs from
10/1/93 through 9/30/94 | attained an error measure of
570.2, and a GLM (with coe�cients consistent with those
�t to the two year data) achieved 557.9. Both of these
models were decisively inferior to a weighted time damp
model, this time with � = 12, which gave an error measure
of 350.1.

It is troubling that the two overlapping time intervals
lead to values of � di�ering by an order of magnitude.
For example, when � = 0:75, changes made 3 months ago
are exp(-3/16) = 83inuential as changes made yesterday,
while when � = 12, the corresponding factor is only exp(-3)
= 5(However, for the one-year data, � = 0:75 also is su-
perior to the GLM, which has an error measure of 535.9.)
The larger value of � appears to be the anomaly, since the
time interval 10/93 through 9/94 produces a value of �
similar to that for the two-year data.

A bootstrap analysis (see [21] ) of the two-year data con-
cluded that the uncertainty associated with the value of �
is large enough to suggest that 0.75 could plausibly be o�

by a factor of 2 in either direction (that is to say, a 95%
bootstrap con�dence interval for � would be [0.375,1.5]),
still leaving � = 12 far outside. This remains disconcerting
for those who would like to interpret � as a rate at which
bugs are found and �xed.

V. Summary

In this work we developed several statistical models to
evaluate which characteristics of a module's change history
were likely to indicate that it would see large numbers of
faults generated as it continued to be developed. Some of
our conclusions are listed below.

� Our best model, the weighted time damp model, pre-
dicted fault potential using a sum of contributions from all
the changes to the module in its history. Old changes were
downweighted by a factor by about 50% per year.
� The best generalized linear model we found used num-
bers of changes to the module in the past together with
a measure of the module's age. We obtained slightly less
successful performance from these, and from a model which
predicts numbers of future faults from numbers of past
faults.
� Models which account for number of changes made to a
module could not be improved by including the module's
length, and therefore most software complexity metrics are
of limited use in this context.
� We saw no evidence of a \too many cooks" e�ect: the
number of developers who had changed a module did not
help predicting numbers of faults.
� A measure of the frequency with which a module was
changed in tandem with other modules was also a poor
predictor of fault likelihood.
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