NISS

Performance-Oriented Regression Testing of Fielded Software

Alan Karr March 3, 2005

Antecedent: ITR Project on Lightweight Instrumentation

- Driving question: Can useful data be collected about fielded software?
- Why do it?
 - Learn about users, usage, performance
 - Richer data-cannot be duplicated in a lab
- Why is it challenging?
 - Unobserved heterogeneity
 - Privacy
 - Performance implications of heavy instrumentation

Count Data

- Full instrumentation consists of associating a counter with each
 - Procedure
 - Statement
 - ...
- Save counts
 - Every n seconds
 - At end of execution
- · There may also be covariate information

Fundamental Questions

- Is there as much information in some (small) subset of the counts (LWI) as in the full set of counts (HWI)?
- If so,
 - Is the effect real?
 - Is there associated science?
- Can LWI be designed without HWI?
 - Validation problem

Prototype Study: Protocol

- 23 versions of JABA, a Java byte code analyzer
 22 buggy versions, some with multiple errors
 1 gold standard varsion
 - 1 gold standard version
- 707 test cases targeting different APIs
- Run each test case on each version
- Fully instrumented
 - Statements
 - Methods (caller x callee)
 - Throws and catches (exception handling)

The Data

- For each version and test case,
 - ~12K statement counts
 - ~1200 call counts (callee)
 - ~ 100 throw/catch counts
 - Binary success/failure response
 - Success = got same answer as gold standard
 - Failure = crashed or ran and got wrong answer
- Percent of failing test cases ranged from 0 to 52%

The Results

• GOOD

- Random forests identified small (2-7) sets of good statement counts
 - Call counts added nothing
- Throw/catch counts were generally useless
 Multiplicity was not an issue
- BAD
 - For some versions, the same was true for random forests applied to randomly selected 5% of the statements
 - Good predictors for single-error versions did not work well
 - for multiple-error versions containing the same error

• UGLY

- Only limited scientific verification

The Skoll DCQA Process: Around the World, Around the Clock Distributed Testing

- Set of clients available for testing
 - Each has characteristics such as OS, ...
- · Server that responds to client requests: sends
 - Instance of software with certain configuration
 - Testing task(s)
- · Client performs tests and returns results to server
- Reference: www.cs.umd.edu/projects/skoll

Applications of Skoll

- Settings
 - Regression testing
 - Testing of new functionality
- · Typical goal
 - Diagnose faults, often by identifying problem configurations
- Challenges
 - High-dimensional configuration space
 - Constraints on configurations, possibly dependent on client characteristics
 - Limited data

The Performance Setting

- Software system with fielded instances *i* characterized by
 - Configuration
 - Observable characteristics (example: OS)
 - Unobservable characteristics (example: CPU speed, memory, other processes)
- Performance measure P
 - Assume higher is better

Example Scenarios

- Performance-oriented regression testing
 Does new functionality interfere with performance?
- Optimization
 - Given observables, what configuration optimizes performance?
 - · Averaged over unobservables
 - · Worst case unobservables
- Identifying underperforming configurations and observables
 - For what (C,O) pairs is performance unacceptable?
 - · Averaged over unobservables
 - · Worst case unobservables

A Mathematical Formulation

- Configuration C_i ∈ C = configuration space (which is big, involves constraints, ...)
- Observables O_i ∈ O = space of observables (example: OS)
- Unobservables θ_i ∈ Θ = generic space of unobservables (example: baseline speed or load, memory)
- C, O, Θ are all high-dimensional

Basic Statistical Model

$$P_i = f(C_i, O_i, \theta_i) + \varepsilon_i,$$

where

- $\theta_i \in \Theta$ = unobservables for instance *i*, treated as a random variable
- ε_i = measurement error

Approach

- Space-filling design in C
- Bayesian techniques for random effects models

Challenges

- Selection of performance measures
- Calibration
- Model validation
- · Adaptive versions

Scenario 2

Average case performance: Solve

$$C^*(O_0) = \arg\max_C \int f(C, O_0, \theta) p(\theta) d\theta$$

Worst case performance: Solve

$$C^*(O_0) = \arg\max_C \min_{\theta} f(C, O_0, \theta).$$

Then substitute \hat{f} for f.

Scenario 3

Average performance:

$$B^* = \left\{ (C, O) : \int f(C, O, \theta) p(\theta) d\theta \le \alpha \right\}$$

Worst case performance:

$$B^* = \left\{ (C, O) : \min_{\theta} f(C, O, \theta) \le \alpha \right\}$$

Then substitute \hat{f} for f.

