
1

Performance-Oriented Regression
Testing of Fielded Software

Alan Karr
March 3, 2005

Antecedent: 
ITR Project on Lightweight Instrumentation

• Driving question: Can useful data be collected 
about fielded software?

• Why do it?
– Learn about users, usage, performance
– Richer data—cannot be duplicated in a lab

• Why is it challenging?
– Unobserved heterogeneity
– Privacy
– Performance implications of heavy instrumentation

Count Data

• Full instrumentation consists of associating a 
counter with each
– Procedure
– Statement
– …

• Save counts
– Every n seconds
– At end of execution

• There may also be covariate information



2

Fundamental Questions

• Is there as much information in some (small) 
subset of the counts (LWI) as in the full set of 
counts (HWI)?

• If so,
– Is the effect real? 
– Is there associated science?

• Can LWI be designed without HWI?
– Validation problem

Prototype Study: Protocol

• 23 versions of JABA, a Java byte code analyzer
– 22 buggy versions, some with multiple errors
– 1 gold standard version

• 707 test cases targeting different APIs
• Run each test case on each version 
• Fully instrumented

– Statements
– Methods (caller x callee)
– Throws and catches (exception handling)

The Data

• For each version and test case,
– ~12K statement counts
– ~1200 call counts (callee)
– ~100 throw/catch counts
– Binary success/failure response

• Success = got same answer as gold standard
• Failure = crashed or ran and got wrong answer

• Percent of failing test cases ranged from 0 to 
52%



3

The Results
• GOOD

– Random forests identified small (2-7) sets of good 
statement counts

• Call counts added nothing
• Throw/catch counts were generally useless

– Multiplicity was not an issue
• BAD

– For some versions, the same was true for random forests 
applied to randomly selected 5% of the statements

– Good predictors for single-error versions did not work well 
for multiple-error versions containing the same error

• UGLY
– Only limited scientific verification

The Skoll DCQA Process:
Around the World, Around the Clock 

Distributed Testing

• Set of clients available for testing
– Each has characteristics such as OS, …

• Server that responds to client requests: sends
– Instance of software with certain configuration
– Testing task(s)

• Client performs tests and returns results to server
• Reference: www.cs.umd.edu/projects/skoll

Applications of Skoll
• Settings

– Regression testing
– Testing of new functionality

• Typical goal
– Diagnose faults, often by identifying problem 

configurations
• Challenges

– High-dimensional configuration space
– Constraints on configurations, possibly dependent 

on client characteristics
– Limited data



4

The Performance Setting

• Software system with fielded instances i
characterized by
– Configuration
– Observable characteristics (example: OS)
– Unobservable characteristics (example: CPU 

speed, memory, other processes)
• Performance measure P

– Assume higher is better

Example Scenarios
• Performance-oriented regression testing

– Does new functionality interfere with performance?

• Optimization
– Given observables, what configuration optimizes 

performance?
• Averaged over unobservables
• Worst case unobservables

• Identifying underperforming configurations and 
observables
– For what (C,O) pairs is performance unacceptable?

• Averaged over unobservables
• Worst case unobservables

A Mathematical Formulation



5

Basic Statistical Model

Approach
• Space-filling design in C
• Bayesian techniques for random effects 

models

Challenges
• Selection of performance measures
• Calibration
• Model validation
• Adaptive versions

Scenario 2



6

Scenario 3

Collaborator
• Adam Porter, CS, UMaryland

Reference
• A. F. Karr and A. A. Porter (2005). Distributed 

performance testing using statistical modeling. 
Submitted to ICSE 2005 Workshop on Advances in 
Model-Based Software Testing (A-MOST).


