Cyclic Perturbation: Protecting Confidentiality in Tabular Data

George T. Duncan
Stephen F. Roehrig
Carnegie Mellon University

Start With Some Microdata

Individual	v	w
1	v_1	W_3
2	v_1	w_3 w_2
3	v_4	w_3
4	v_2	w_1
5	v_1	W_3
6	v_3	w_4
:	•	•

$$v \in \{v_1, ..., v_I\}$$

 $w \in \{w_1, ..., w_J\}$

Count Up to Make a Table

	\mathbf{w}_1	\mathbf{w}_2	W_3	W_4	
\mathbf{v}_1	15	1	3	1	20
\mathbf{v}_2	20	10	10	15	55
\mathbf{v}_3	3	10	10	2	25
V_4	12	14	7	2	35
	50	35	30	20	135

Look For Sensitive Cells

	\mathbf{w}_1	\mathbf{w}_2	W_3	W_4	
v_1	15	1	3	1	20
V_2	20	10	10	15	55
V_3	3	10	10	(2)	25
V_4	12	14	7	(2)	35
	50	35	30	20	135

Apply a Disclosure Limitation Method

- Suppress some cells
 - Publish only the marginal totals
 - Suppress the sensitive cells, plus others as necessary
- Perturb some cells
 - Controlled rounding
 - Cyclic perturbation

How to Choose a Method?

• Disclosure risk:

- the degree to which confidentiality might be compromised
- perhaps consider feasibility intervals, or better, distributions of possible cell values

Data utility

- a measure of the value to a legitimate user
- higher if errors in a user's analysis are smaller
- higher if the user can *estimate* magnitude of errors in analysis based on the released table

The R-U Confidentiality Map

Releasing Only the Margins

- 18,272,363,056 tables have our margins (thanks to De Loera & Sturmfels).
- Low risk, low utility.
- Easy!
- Very commonly done.
- Statistical users might estimate internal cells with e.g., iterative proportional fitting.

Suppress Sensitive Cells & Others

	\mathbf{w}_1	\mathbf{w}_2	W_3	W_4	
\mathbf{v}_1	15	p	S	p	20
\mathbf{v}_2	20	10	10	15	55
V_3	3	10	S	p	25
V_4	12	S	7	p	35
	50	35	30	20	135

- This may not be a good suppression pattern: only three possible original tables...
- Hard to do correctly.
- Users have no way of estimating cell value probabilities.

Controlled Rounding

	\mathbf{w}_1	\mathbf{w}_2	W_3	W_4	
\mathbf{v}_1	15	0	3	0	18
\mathbf{v}_2	21	9	12	15	57
V_3	3	9	9	3	24
V_4	12	15	6	3	36
	51	33	30	21	135

Example of base 3 rounding

- Uniform (and known) feasibility interval.
- Easy for 2-D tables, perhaps impossible for 3-D
- If we know the *exact* method, we can find the cell distributions.
- 1,025,908,683 possible original tables.

Cyclic Perturbation: Basics

Choose cycles that leave the margins fixed.

• The set of cycles determines the published table's feasibility interval.

 Choose a set of cycles that covers all table cells "equally". Example:

two "chances" to move.

- Flip a three-sided coin with outcomes
 - A (probability = α)
 - B (probability = β)
 - C (probability = γ)
- If A, add the first cycle (unless there is a zero in the cycle)
- If B, subtract the first cycle (unless there is a zero in the cycle)
- If C, do nothing
- Repeat with the remaining cycles

- For the chosen set of cycles, there are 3⁴=81 possible perturbed tables.
- The feasibility interval is original value ± 2 .

- Choose α , β .
- Perturb.
- Publish the resulting table.
- Publish the cycles and α , β .

Original

15 1 3 1 20 10 10 15 3 10 10 2 12 14 7 2

Perturbed table

16	0	2	2
21	11	9	14
2	11	11	1
11	13	8	3

Analysis of Cell Probabilities

Distributions of Cell Values

- Since the mechanism is public, a user can calculate the distribution of true cell values.
- Compute every table T^k that *could have been* the original, along with the probability $Pr(T^P \mid T^k)$.
- Specify a prior distribution over all the possible original tables T^k .
- Apply Bayes' theorem to get the posterior probability $Pr(T^k \mid T^P)$ for each T^k .
- The distribution for each cell is

Results for the Example

Original

Perturbed table

5

$$q = 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$

$$Pr(t(1,2) = q \mid T^{P}) \quad 0.71 \quad 0.25 \quad 0.04 \quad 0.00 \quad 0.00 \quad 0.00$$

$$Pr(t(1,4) = q \mid T^{P}) \quad 0.06 \quad 0.25 \quad 0.38 \quad 0.25 \quad 0.06 \quad 0.00$$

$$Pr(t(3,4) = q \mid T^{P}) \quad 0.00 \quad 0.71 \quad 0.25 \quad 0.04 \quad 0.00 \quad 0.00$$

$$Pr(t(4,4) = q \mid T^{P}) \quad 0.00 \quad 0.05 \quad 0.29 \quad 0.44 \quad 0.21 \quad 0.01$$

Properties

- It's not difficult to quantify data utility and disclosure risk (*cf.* cell suppression and controlled rounding).
- Priors of data users and data intruders can be different.
- **Theorem:** For a uniform prior, the mode of each posterior cell distribution is it's published value.

Scaling

- Sets of cycles w/ desirable properties are easy to find for larger 2-D tables.
- Extensions to 3 and higher dimensions also straightforward.
- Computing the perturbation for any size table is easy & fast.
- The complete Bayesian analysis is feasible to at least 20×20 (with no special TLC)

What Might Priors Be?

- They could reflect historical data.
- If I'm in the survey, I know my cell is at least 1.
- Public information.
- Insider information.

Cell Suppression & Rounding

- A similar Bayesian analysis can be done, provided the *exact* algorithm is available.
- It's generally *much* harder to do.
- Using a deterministic version of Cox's `87 rounding procedure, we must consider "only" 17,132,236 tables.
- For uniform priors, the posterior cell distributions were nearly uniform.
- Three days of computing time for a 4×4 table...

A 3-Way Categorical Table (margins not shown)

j

1	4	66	3
1	2	3	1
4	4	3	1
2	7	1	3

$$k = 1$$

$$k = 2$$

$$k = 3$$

(Source: Java Random.nextInt())

$$M_{1} = \begin{bmatrix} + & - & 0 & \cdot \\ \cdot & + & - & 0 \\ 0 & \cdot & + & - \\ - & 0 & \cdot & + \end{bmatrix}$$

$$M_{1} = \begin{bmatrix} + & - & 0 & \cdot \\ \cdot & + & - & 0 \\ 0 & \cdot & + & - \\ - & 0 & \cdot & + \end{bmatrix} \begin{bmatrix} 0 & + & - & \cdot \\ \cdot & 0 & + & - \\ - & \cdot & 0 & + \\ + & - & \cdot & 0 \end{bmatrix}$$

$$\mathsf{M}_1 = \begin{bmatrix} + & - & 0 & \cdot \\ \cdot & + & - & 0 \\ 0 & \cdot & + & - \\ - & 0 & \cdot & + \end{bmatrix} \begin{bmatrix} 0 & + & - & \cdot \\ \cdot & 0 & + & - \\ - & \cdot & 0 & + \\ + & - & \cdot & 0 \end{bmatrix} \begin{bmatrix} - & 0 & + & \cdot \\ \cdot & - & 0 & + \\ + & \cdot & - & 0 \\ 0 & + & \cdot & - \end{bmatrix}$$

$$\mathsf{M}_1 = \begin{bmatrix} + & - & 0 & \cdot \\ \cdot & + & - & 0 \\ 0 & \cdot & + & - \\ - & 0 & \cdot & + \end{bmatrix} \begin{bmatrix} 0 & + & - & \cdot \\ \cdot & 0 & + & - \\ - & \cdot & 0 & + \\ + & - & \cdot & 0 \end{bmatrix} \begin{bmatrix} - & 0 & + & \cdot \\ \cdot & - & 0 & + \\ + & \cdot & - & 0 \\ 0 & + & \cdot & - \end{bmatrix}$$

$$\mathsf{M}_2 = \begin{bmatrix} - & 0 & \cdot & + \\ + & - & 0 & \cdot \\ \cdot & + & - & 0 \\ 0 & \cdot & + & - \end{bmatrix} \begin{bmatrix} + & - & \cdot & 0 \\ 0 & + & - & \cdot \\ \cdot & 0 & + & - \\ - & \cdot & 0 & + \end{bmatrix} \begin{bmatrix} 0 & + & \cdot & - \\ - & 0 & + & \cdot \\ \cdot & - & 0 & + \\ + & \cdot & - & 0 \end{bmatrix}$$

$$\mathsf{M}_2 = \left[\begin{array}{ccc|c} - & 0 & \cdot & + \\ + & - & 0 & \cdot \\ \cdot & + & - & 0 \\ 0 & \cdot & + & - \end{array} \right] \left[\begin{array}{ccc|c} + & - & \cdot & 0 \\ 0 & + & - & \cdot \\ \cdot & 0 & + & - \\ - & \cdot & 0 & + \end{array} \right] \left[\begin{array}{ccc|c} 0 & + & \cdot & - \\ - & 0 & + & \cdot \\ \cdot & - & 0 & + \\ + & \cdot & - & 0 \end{array} \right]$$

$$\mathsf{M}_3 = \begin{bmatrix} 0 & \cdot & + & - \\ - & 0 & \cdot & + \\ + & - & 0 & \cdot \\ \cdot & + & - & 0 \end{bmatrix} \begin{bmatrix} - & \cdot & 0 & + \\ + & - & \cdot & 0 \\ 0 & + & - & \cdot \\ \cdot & 0 & + & - \end{bmatrix} \begin{bmatrix} + & \cdot & - & 0 \\ 0 & + & \cdot & - \\ - & 0 & + & \cdot \\ \cdot & - & 0 & + \end{bmatrix}$$

Original & Perturbed Tables

1	4	66	3
1	2	3	1
4	4	3	1
2	7	1	3

```
2 3 2 68
228 4 78 3
1 5 6 61
10 3 1 2
```

4	80	2	1
4	2	2	1
3	4	4	45
61	3	55	4

```
      1
      5
      65
      3

      1
      2
      4
      0

      3
      4
      3
      2

      3
      6
      1
      3
```


Results for the Example

- There are 28 tables that could have been the original.
- We have a posterior probability for each.
- We can find distributions for cell values.
- Example: cell (1,1,1):

Value
Probability

0	1	2	3
0.34	0.39	0.22	0.05

Structural Zeros

- Depending on how they are placed, things can be done.
 - If a complete row, find perturbations for a smaller table, then expand to accommodate the row.
 - Find a Markov or Gröbner basis for the table with fixed values, and use a "knapsack" approach to build perturbations.

Structural Zeros Example

- A table with two structural zeros:
- Compute a Markov basis for the set of moves that leave these cells and the margins unchanged.

0		
	0	0

- There are 21 moves in one basis (versus 36 for the unrestricted 4×4 table).
- Solve a knapsack-like problem to find suitable combinations.

Structural Zeros Example

• These perturbations will work:

- In higher dimensions, this is currently computationally difficult.
- We can break large tables into smaller sub-tables if necessary.

What's Next

- We need a perturbation generator
 - The table disseminator enters the table size, and locations of any structural zeros.
 - The generator deterministically produces a set of perturbations.
 - The table is perturbed and released.
 - The generator is made available to data users.

Summary

- Cyclic perturbation protects sensitive data by stochastic modifications that are revealed to data users.
- It respects structural and other zeros.
- Disclosure limitation with cyclic perturbation is fast, and scales to large tables and high dimensions.
- For moderate sized tables, cell distributions can be computed.
- For uniform priors, the published value is the most likely value.