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Abstract

We propose a general algorithm to sample from a bivariate distribution with given
marginals and arbitrary dependence structure. We mainly focus on positive random vari-
ables with a highly negative coeflicient of correlation.
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1 Introduction

We consider the problem of sampling from a joint bivariate distribution, assuming the
marginals are known. Bivariate models with known marginals have already been thoroughly
investigated e.g. in the framework of extreme value theory [15],[16], but essentialy for positive
random variables with a positive correlation. Our approach allows in particular to deal easily
with positive random variables negatively correlated.

For this purpose, we have designed an algorithm which incorporates three parameters: an
integer n > 2, a permutation o on {1,---,n}, and a parameter p. Both n, p and ¢ determine
the correlation between the two components of the sampled bivariate random vector. The p.d.f.
we are sampling from will thus be parametricized by n, p and . When p = 1, independence
between the two components is guaranteed. When n = 2, our distribution corresponds to the
Farlie-Gumbel-Morgenstern model [10].

We shall be interested in the behaviour of the underlying joint distribution when n — oco.
In particular, we show how to sample from a bivariate distribution either with a minimum
or maximum coefficient of correlation- p. We also prove that if the marginals are positive
variables, then the lower bound for p may be greater than —1. We compute explicitly this
lower bound.

2 Algorithm

Although there is an extensive literature on simulation [5], only a few authors consider the
problem of sampling from a bivariate distribution with given marginals [4],[11].

Let fx, fy be univariate p.d.f. Here, we propose an algorithm to sample from a joint p.d.f.
with given marginals fx and fy. We proceed as follows. Let n > 2, let o be a permutation
on {l,---,n},and let 0 <p < 1.

1. Sample independent deviates Xi,---, X, from fx.

2. Sample independent deviates Y1, --,Y, from fy.
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3. Let X;),Y(;), 1 <1,j <n, denote the order statistics. Then the final bivariate
sampled vector is (U, V) with

(X1, 1) with probability p
(X(1)) Y(o(1))) Wwith probability (1 - p)/n
U, V) = (X(2): Y(o(2))) Wwith probability (1 - p)/n

(X(n),Y(U(n))) with probability (1 —p)/n

This algorithm can easily be generalized to the fully multivariate case (see section 4), but
here we only focus on the bivariate case.

As n — oo, using appropriate permutations o, we can sample from any arbitrary joint
p.d.f. with fixed marginals fx and fy. It is also clear that if p = 1, then U and V are
independent. Furthermore, minimizing or maximizing p(U, V) will be achieved with p = 0.
To proceed any further, we need two lemmas.

Lemma 2.1 Let n be fized , and let x1,---,2, and y1,---,yn be two sequences of arbitrary
real numbers. Then, the optimum of the expression T(1)Y(o(1)) T + T(n)Y(o(n)) 18 attained by

the following permutations: o(i) = n—1i+1 for the minimum, and (i) =i for the mazimum.

Lemma 2.2 The joint theoretical distribution we are sampling from, using the previous algo-
rithm, s given by the following mixture:

1 _ n
P(U < u,V < v) = pP(X; < w)P(Y; < v) + Tp ST P(Xiy < WPV <v) (1)

=1
Hence,
1 _ n
EWUV) = pE(X)E(X:)+ —LB[ Y XYy 2)
=1
1 _ n
= PE(X)E(X2) + —£ 3" (X)) E(o(iy) 3)
=1

and therefore the correlation between U and V is equal to

— lL-p 1¢ | |
p= \/Va,r(Xl)Va,r(Yl) {E(XI)E(Yl) n ; E(X(l))E(Y(o(z)))} (4)

From lemma 2.1 combined with (2) and (3), we find that if n is fixed, the correlation is
minimum and denoted as p,,;, (resp. maximum and denoted as pmax) if 0(i) = n—i+1
(resp. o(i) =1),4i=1,---,n. From now on, we shall only consider these two permutations.

3 Asymptotics

The asymptotic distributions for X(;) and Y(,(;)) are normal, see [3], page 469. Here, we are
interested in looking at pi; and pmax as n — oo. We have ( [3], page 469):
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where Fx, Fy are the c.d.f. associated with the marginals fx, fy. As n — oo, assuming Fy
and Fy have finite first and second order moments, we finally find:

— 1
min =~y (OB - [ PR R -2} )
| L-p E(X,)E(Y, () Pl (20 6
pmax  — —War(XIWM(Yl){ (X1) <1)—/0 (@) Fy (x)dr ). (6)

The condition for (5) or (6) to hold is that the Riemann integral in the right hand side exists.
Now, assume that p = 0. In particular, if Fx = Fy, with the change of variable z = Fx (y)
in (6), we find that pmax — 1. Also, if Fx and Fy are nonidentical exponential distributions,
then pmax — 1. If Fx = Fy and Fyx is a symmetric distribution, then Pmin — —1, and this
can be proved using the change of variable z = Fx(y) in (5) together with the fact that for
~ a symmetric distribution, Fy;}(1 — z) = 2B(Y) — Fy'(z). For positive random variables, the
lower bound p;,, may be greater than —1. In particular, we get this surprising result:

Theorem 3.1 If U and V are correlated random variables with exponential marginal distri-
butions and possibly different marginal means, then

1 2
(U, V) > -1 +/ log(z)log(l — z)dz =1 — % ~ —0.644.
0

The lower bound in theorem 3.1 can be attained, see section 5.1. Note that positive correlated
random variables have received some attention in the literature during the last 30 years at
least. The reader is referred to [6],[7],[10],[11],[15],[16]. See also [2],[9],[14] for interesting
material on multivariate exponential distributions. ‘

4 Trivariate distributions

The algorithm easily generalizes to the d-dimensional case. If d = 3, we need two permutations
o,7 and the algorithm is as follows, with a straightfoward extension of notations:

1. Sample independent deviates X1, .-, X, from fx.
2. Sample independent deviates Y1, ---,Y, from fy.

3. Sample independent deviates Z1,---, Z, from f;.
4

. Let X(;),Y(;), Y&y, 1 < 4,5,k < n, denote the order statistics. Then the final
trivariate sampled vector is (U, V,W) with :

( (X1,Y1,71) with probability p
(X(l),Y(U(l)), Z(z(1))) Wwith probability (1 -p)/n
UV, W) = (X(2): Yo(2)): Z(r(2))) With probability (1 —p)/n
(X(n), Y(a(n))7 Z(T(n))) with probability (1 - p)/n

Lemma 4.1 The joint theoretical distribution we are sampling from, using the previous algo-
rithm, s given by the following mizture:

P(U<w,V <v,W<w) = pP(X;<u)P(Y1 <v)P(Z; <w)+

1 _ n
T P > P(Xa) < w)P(Yoy < 0)P(Z(ray < w)
=1 :



5 Applications

We first assess our algorithm on simulated data, then we provide an example based on true
data. An important case corresponds to n = 2, with a minimum correlation. In that case, the
joint distribution we are sampling from has a simple c.d.f.:

F(u,v) = Fx(u)Fy (v) {p + (1 = p)(Fx (u) = Fx(u)Fy (v) + Fy (v))} .

This is just a Farlie-Gumbel-Morgenstern system of distributions [10]. Using the notation
Fx =1—-Fx,Fy =1 - Fy, we can still write:

F(u,v) = Fx(u)Fy (v){1 = (1 - p)Fx(u) Fy (v)}, (7)

and now the analogy with formula (1) in [10] is straightfoward. Similarly, if n = 2 and if the
correlation is maximum, we find

F(u,v) = Fx(u)Fy (v){1 + (1 — p)Fx(u)Fy (v)}, (8)

corresponding to the other case of the Farlie-Gumbel-Morgenstern system of distributions.

For n > 2, our family of bivariate distributions does not fall within the class of the iterated
Farlie-Gumbel-Morgenstern distributions. Let us consider the case n = 3 with minimum
correlation and exponential marginals. Table 1 shows that this correlation is less than the
minimum correlation obtained with n = 2. If our bivariate distribution is of iterated Farlie-
Gumbel-Morgenstern type, then it is clear that » = 3 should correspond to the single iteration
of that model [10]. But Huang and Kotz have proved that the single iteration can not decrease
the correlation of the noniterated (or ordinary Farlie-Gumbel-Morgenstern) case. Thus our
distribution (with n = 3 and miminum correlation) does not fall into the class of distributions
studied by Huang and Kotz. And remarquably, we decrease the minimum correlation by
increasing n from 2 to 3. This contrasts with the results obtained for the single iteration
model in [10]. '

5.1 Simulations

Only a few of the simulations we have performed are reported here. For instance, we have
partly omitted to incorporate the tests which show good fit with the target marginal distribu-
tions. Also, the case when the random variables are positively correlated has been successfully
handled, but the results are not reported here.

We only present the results connected with the most challenging problem: assessing the
lower bound of —0.644 on practical simulations for the exponential case. Let us mention that
in this case, the limiting distribution is degenerated, with UV = 0. Also note that with
gamma marginals, we were able to obtain a coefficient of correlation as low as -0.75. All the
simulations were performed on a basis of 20,000 generated deviates per test.

When n = 2, it is easy to prove that py,;; = —(1 — p)/4 and pmax = (1 — p)/4 for
exponential marginals. In table 1, the simulations are performed for exponential marginals of
mean F(X;) =1 and E(Y;) = 0.5. The parameter p is set to zero.

5.2 Real Data

Theorem 3.1 has a significant importance in some contexts. For instance, let us consider
the stochastic process of storms and cells investigated by Rodriguez et al [12],[13] to model
rainfall precipitations. Each cell has an exponential duration and an exponential depth. In



n | E(U) E(V) Var(U) Var(V) P

2 | 1.013 0.496 1.018 0.249 —-0.253
3 10996 0.501 0.971 0.248 —0.368
4 10.998 0.496 0.993 0.245 —0.427
10 | 1.004 0.504 1.017 0.259 —0.548
400 | 1.005 0.500 1.006 0.257 —-0.640

Table 1: Simulations: computation of the moments and correlation of the sampled marginals.

E(U) E(V) E(UV) p E(Z) Std(2)
Data 0.69 244 134 —022 0072 033
n=2p=1 | 0.69 228 170 +0.07 0.082 0.59
n=2p=006| 0.67 249 1.29 —0.21 0.071 045

Table 2: Model fitting by comparing estimates of different moments for rainfall data. Note
the dramatic improvement obtained with n =2 and p = 0.06 over n =2 and p = 1.

the original model, cell depths and cell durations are assumed to be independent. But in
fact, this assumption is irrealistic, since heavy rains are likely to have a short duration and
conversely. As a result, this model exhibits a lack of fit with true data. In order to overcome
this deficiency, we are currently investigating a joint model for cell depths and cell durations,
with exponential marginals and a negative coefficient of correlation. The theory developed
here shows that this coefficient must necessarily be greater than -0.644, otherwise we would
have to investigate e.g. gamma marginals instead of exponential marginals. Fortunately, in
this example, p = —0.22 and thus we can use our algorithm even with n = 2. The dataset
investigated here is studied in [8].

We denote cell depths by U and cell durations by V. Three sets of statistics are compared:
the statistics computed on real data via Markov chain Monte-Carlo methods (this methodol- "
ogy allows us to recover hidden features of the process such as cell durations and cell depths),
the statistics obtained under the assumption of independence (i.e. with p = 1), and then the
statistics computed with n = 2 and p = 0.06. The statistics computed here are essentially mo-
ments of (U, V) (mean, correlation), but we have also considered the hourly rainfall aggregate
Z as defined in [8]. The hourly aggregates are a complex function of U, V' and other hidden
features of the model developed in [8].

Table 2 shows a dramatic improvement with n = 2 and p = 0.06, over p = 1. Still, the
standard deviation for Z is quite poor. There is about 460 cells, and each cell has a duration
which depends on its parent storm. Since there is on average one cell per storm, we can not
expect to get a high degree of precision in the statistics computed here. We should allow for
an error equal to about 5%.

In a similar context, Bacchi et al. have investigated another bivariate exponential model
with a negative correlation for modeling storm depths (also called intensities in their paper)



and durations [1]. This model, namely
F(u,v) =1 — exp(—au) — exp(—pv) + exp(—au — fv — aféuv), 0<6<1 (9

(see [9]), has a minimum correlation (when ¢ = 1) equal to
=1 +/ eXp( %) 2 ~ —0.404. (10)

The authors were not aware of the fact that other bivariate exponential models with a negative
correlation, such as the model derived from (7), were already available in the literature. In
an application on a real dataset, they find that the correlation is close to the lower bound,
p = —0.404, and some of the correlations they have computed and reported in table 2 in their
paper are as low as -0.591. In such a case, it might be better to use a model which allows for
highly negative correlations, rather than using (9). For instance, one might investigate our
model with gamma marginals. Or our model with exponential marginals and n = 4, which
has a minimum correlation equal to p = —0.427, as can be seen from table 1. It would be
interesting to check whether our model could improve the results obtained in [1], if we consider
a sufficiently large value for n.
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