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FUNCTIONAL DATA ANALYTIC APPROACH OF MODELING ECG
T-WAVE SHAPE TO MEASURE CARDIOVASCULAR BEHAVIOR1

BY YINGCHUN ZHOU AND NELL SEDRANSK

East China Normal University and National Institute of Statistical Sciences

The T-wave of an electrocardiogram (ECG) represents the ventricular
repolarization that is critical in restoration of the heart muscle to a pre-
contractile state prior to the next beat. Alterations in the T-wave reflect var-
ious cardiac conditions; and links between abnormal (prolonged) ventricu-
lar repolarization and malignant arrhythmias have been documented. Cardiac
safety testing prior to approval of any new drug currently relies on two points
of the ECG waveform: onset of the Q-wave and termination of the T-wave;
and only a few beats are measured. Using functional data analysis, a statis-
tical approach extracts a common shape for each subject (reference curve)
from a sequence of beats, and then models the deviation of each curve in the
sequence from that reference curve as a four-dimensional vector. The repre-
sentation can be used to distinguish differences between beats or to model
shape changes in a subject’s T-wave over time. This model provides physi-
cally interpretable parameters characterizing T-wave shape, and is robust to
the determination of the endpoint of the T-wave. Thus, this dimension reduc-
tion methodology offers the strong potential for definition of more robust and
more informative biomarkers of cardiac abnormalities than the QT (or QT
corrected) interval in current use.

1. Introduction. Electrocardiograms (ECGs) are widely used to screen and
monitor the cardiac function of patients; and the behavior of the ECG wave form
is a basis for diagnosis of specific abnormalities. Important wave forms of an ECG
are marked by P, Q, R, S, T, as illustrated in Figure 1; these represent the changes
in electrical potential as the heart contracts and relaxes. The T-wave represents the
repolarization (or post-contractile phase) of the ventricles; and it is generally the
most labile wave in the ECG. Abnormalities in the T-wave may be physiologic or
may be externally induced, for example, by cardio-active drugs.

The link between cardiac repolarization abnormalities and malignant arrhyth-
mias, especially torsades de pointes (TdP), which may degenerate into ventricular
fibrillation leading to sudden death, is well documented. Since some drugs, for ex-
ample, haloperidol [FDA (2007)] and terfenadine [Morganroth, Brown and Critz
(1993)], have been shown to cause repolarization abnormalities, testing for cardiac
safety is required as a part of every new drug application to the FDA; and the FDA
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FIG. 1. Features of a normal ECG.

places very stringent constraints on the allowable prolongation of the repolariza-
tion process.

The current measure for cardiac safety that is used in drug development and
drug approval is prolongation of the QT interval. The premise for using this mea-
sure is the evidence that the particular repolarization aberration, TdP, is either pre-
ceded by or characterized by a pro-arrhythmia defined in terms of delayed termi-
nation of the T-wave; more recently increased heterogeneity of T-waves has also
been implicated [Couderc et al. (2009)]. The QT interval was first put forward in
the 1920s and has been in continual use since, with little modification and with
cardiologists personally marking the two critical points on the ECG: the initiation
of the Q-wave and the termination of the T-wave. From a practical point of view,
in a normal ECG of good quality, there is relatively little difficulty in the determi-
nation of the onset of the Q-wave even though an ECG has no actual “baseline.”
However, measurement of the QT interval also relies on accurate and reproducible
determination of the endpoint of the T-wave, which is a greater challenge, as can
be seen from Figure 2. The differences between two cardiologists’ marks are 17

FIG. 2. Two cardiologists’ marks of T-wave ends for 3 beats in a QT Dataset. The differences are
17 milliseconds (a), 15 milliseconds (b) and 104 milliseconds (c).
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milliseconds in (a), 15 milliseconds in (b) and 104 milliseconds in (c). For QT
analyses presented to the FDA, exceedance of 10 milliseconds for the maximal
time difference between drug and control over all time points for a single patient
calls into question the cardiac safety, requiring further discussion, at the least, be-
fore considering approval of the drug.

Thus, weaknesses of the current measurement method are four-fold: (1) QT as
a cardiac safety indicator is predicated on detecting a heart-rhythm change associ-
ated (but not exclusively) with a particular cardiac arrhythmia. Slow trends, abrupt
shifts in T-wave morphology, early precursors for T-wave changes and/or episodic
events are not necessarily reflected. (2) The measurement ignores the information
in the shape of the curve (the T-wave morphology), relying instead upon only two
points of the complex curve. (3) Accuracy and the reproducibility of the measure-
ment based on the endpoint of the T-wave depend on the sharpness of the T-wave
form. (4) Current measurement practice calls for measuring and then averaging a
sequence of a few (usually three) “highly similar” beats, most often from a 10-
second record. (This 10-second sequence is often preselected by an algorithm that
excludes difficult-to-read “outlier” beats and then captures a sequence for a near-
constant heart rate, following 90 seconds of minuscule heart-rate variation. In this
case, the cardiologist does not see the complete ECG, but only the selected beat
sequence.)

In this paper a statistical model of the T-wave shape is constructed based on
function data analysis (FDA), using all the data in an extended (minutes or longer)
ECG record. This model has four interpretable parameters and performs well in
describing both normal and arrhythmia ECGs available in public libraries. Because
the parametrization of the model accounts for the morphology of the entire T-wave,
it is particularly useful for describing changes in the repolarization process. It also
has the significant advantage that it is robust to the determination of the onset or
the end of the T-wave.

Effectively, this functional data analysis approach decomposes a sequence of
T-waves for an individual subject into a reference curve (representing the com-
mon shape of the T-waves) and a four-dimensional representation of the deviation
of each individual T-wave in the sequence. Inference about changes in cardiac
function within the sequence can now be analyzed through the four-dimensional
representation of individual T-waves. For multiple ECG sequences for the same
subject, the reference curves for the individual sequences can be treated as data to
again be analyzed by the appropriate construction of a (superpopulation) hyper-
reference curve (representing the common shape of the reference curves) and
four-dimensional representations of the “hyper-deviations” of each reference curve
from the hyper-curve. In this fashion, the hyper-deviations can be used to analyze
longer scale processes such as diurnal effects or shifts in baseline ECGs for long-
term experiments.

Alternative methods to model the shape of ECG waves including the T-wave
are principal component analysis (PCA) [Laguna et al. (1999)] and Gaussian mod-
els [Clifford (2006)]. Both methods fit the wave forms quite well and reduce the
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dimension of the data significantly. However, in terms of interpretation of model
parameters, neither of them does well. The principal components and loadings in
PCA do not provide physical interpretation of ECGs. The location and scale pa-
rameters in a Gaussian model may reveal some information about the shape of a
T-wave, but they are not robust to small changes in T-waves such as those caused
by noise. These features are shown in specific examples in Section 4.

The major difference between this FDA model and other models is that this
model has a common reference curve for all the beats in the sequence and measures
the deviation of each wave from the common curve. So it is most useful when one
wants to compare the wave shape of a sequence of beats. All the other methods
treat each wave separately, making it harder to compare model parameters across
beats.

The ECGs examined in this research were all taken under normal clinical
conditions and are digitized; they are in the public libraries through physionet
(www.physiotnet.org). These ECGs include both normal subjects and subjects with
various classes of arrhythmias and other cardiac function abnormalities; there are
no data available (there or elsewhere) from actual QT studies since this data is
proprietary and is held securely by the pharmaceutical companies.

Section 2 describes the preprocessing of a sample of the digitized ECG data
before feeding it to the model, and lays out a general data structure to be studied.
Section 3 describes the basic model, illustrates model robustness to the marking
of T-wave boundaries, and shows the relation of model parameters to QT. In Sec-
tion 4 statistical inference is shown on how to apply the model to T-wave analysis.
Further issues and potential extension regarding the model and its applications are
discussed on Section 5. Section 6 summarizes the conclusions from this research.

2. Description of data.

2.1. One sample of ECG series. ECG data consist of a series of digitized
waveforms, where the digitized value is the intensity of electrical potential (in mil-
livolts) usually taken at a rate of 250 Hz (1 point per 4 milliseconds) or 1000 Hz
(1 point per millisecond).

In order to make full use of the complete ECG record and to understand the
natural variation of the T-wave over time, a natural representation is given by
“stacking” aligned ECG segments of consecutive beats within a sample. To study
the morphology of the T-wave, the stacked beats are left- and right-truncated uni-
formly, retaining the entire T-wave to form an I × J matrix X = [x1, . . . , xI ]T ,
where xi = [xit1, . . . , xitJ ] is the digitized value of T-wave during the interval of
the ith beat and I is the number of total beats in this record. Beats are aligned ac-
cording to their QRS complexes since this complex is the most remarkable feature
of ECG, and it allows the easiest and least variable alignment. While there are var-
ious methods for choosing the beginning and the end of T-waves, for example, the
threshold method and the slope method [Panicker et al. (2006)], for the purpose of

http://www.physiotnet.org
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this study, the beginning and end points of the stacked T-waves are chosen to be
identical for all the T-waves and to visually capture the shape of the T-waves. As
will be shown later, the method described in this paper is robust to the choice of
the beginning and end points. Having the beginning and end points equal for all
beats is convenient for data analysis.

2.2. General data structure. A general data structure includes three levels:
beat, sample and subject, one nested within another. In a typical study there are P

subjects, each subject has Qp samples, and each sample has Ipq beats. Each beat
has Jpq time points within the T-wave interval. The data structure and notation is
as follows:

• Subject p, p = 1, . . . ,P .
• Sample q (nested within subject p), q = 1, . . . ,Qp .
• Beat i (nested within subject p and sample q), i = 1, . . . , Ipq .
• Time point tj , j = 1, . . . , Jpq .
• Digitized value xitj , i = 1, . . . , Ipq , j = 1, . . . , Jpq .

Note that all the data we use in this paper are digitized ECG data from PhysioNet
(www.physionet.org), a public research resource website for physiologic signals.
The sampling frequency is 250 Hz (250 points per second).

3. T-wave modeling using functional data analysis.

3.1. A model based on modes of variation of functional data. Consider the
data matrix X for a sample ECG. Although X involves only discrete values, it re-
flects smooth curves of T-waves that generate these values. As explained by Ram-
say and Silverman [Ramsay and Silverman (1997)], this data matrix can be viewed
as functional data since each row is a function of the time points at which they are
measured, and these functions together form a family of functions. The goal here
is to characterize each function in this family and to measure their variation.

One way to analyze functional data is to decompose variations along nonlin-
ear directions from a common shape, denoted as the reference curve in this paper.
Nonlinear decomposition of curves or multivariate data has received much atten-
tion in the past twenty years. Hastie and Stuetzle [Hastie and Stuetzle (1989)] did
pioneering work in defining and computing principal curves, which extend the lin-
ear PCA decomposition to nonlinear directions. Methods and applications based
on principal curves are developed by Chalmond and Girard [Chalmond and Girard
(1999)], Dong and McAvoy [Dong and McAvoy (1996)], etc. However, the non-
linear principal curves that are found to explain the most variation in data may not
be interpretable, as is often true for principal components in linear PCA as well.
Izem and Kingsolver [Izem and Kingsolver (2005)] built a 3-parameter shape in-
variant model that decomposes the variation in the data into predetermined and

http://www.physionet.org
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interpretable directions of interest. Their model describes the growth rate of fami-
lies of caterpillars as a function of temperature:

zi(tj ) = wiz
(
wi(tj − mi)

) + hi + εi,j ,(1)

where zi(tj ) is the growth rate of family i at temperature tj , z is the common
shape and hi , mi , wi represent the three modes of interest: vertical shift, horizontal
location and norm-preserving slope change, respectively. A generalization of (1)
is

zi(tj ) = R(θi, tj ) + εi,j ,(2)

where zi(tj ) is a nonlinear function of time points tj and θi is the vector of para-
meters that represent fixed modes of variation.

Motivated by their ideas, a model for T-waves is proposed as a combination of a
reference curve and four fixed modes of variation that are of physiological interest:
uphill slope, downhill slope, horizontal location and vertical shift. The reference
curve represents the common shape of the T-wave; an element in the data matrix
X is modeled as

xitj = xi(tj ) =
{√

uidiK
(
ui(tj − mi)

) + hi + εi(tj ), tj ≤ mi ,√
uidiK

(
di(tj − mi)

) + hi + εi(tj ), tj > mi ,
(3)

where i = 1, . . . , I , j = 1, . . . , J , K is the reference curve, the four parameters
ui , di , mi , hi represent the uphill slope, downhill slope, horizontal location and
vertical shift of the ith T wave, respectively, and εi(tj ) ∼ N(0, σ 2

i ) is the error
term. In light of (2),

R(θi, tj ) =
{√

uidiK
(
ui(tj − mi)

) + hi, tj ≤ mi ,√
uidiK

(
di(tj − mi)

) + hi, tj > mi ,
(4)

where θi = (ui, di,mi, hi). Figure 3 is a diagram of those four modes of variation.
The model in (3) has two innovations over the 3-parameter shape invariant

model in (1). First is the specification of a reference curve. A reference curve
represents the common shape of all curves. It is the curve from which all the other
curves are derived so that the estimated parameters of deformation can be com-
pared and analyzed. A reference curve differs from the principal curve since the
latter is mathematically defined to explain the most variation in the data. To mea-
sure the variation of curves within a sample, a natural choice of the reference curve
is the Fréchet mean [Fréchet (1948)] of the curves in this sample. The Fréchet
mean is a generalized mean on the nonlinear manifold, therefore, it represents the
common shape of the curves. However, since the T-waves do not differ greatly
in shape and location, nonparametric methods, such as spline interpolation of the
pointwise average curve to obtain the reference curve, are effective and much less
computationally intensive. (This is illustrated in Section 3.2.) The resulting curve
is also much closer in shape to the data than a polynomial-based reference curve
as used in Izem and Kingsolver (2005).
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FIG. 3. Four modes of variation of T-waves: uphill slope change (u), downhill slope change (d),
horizontal location (m) and vertical shift (h).

The concept of reference curve becomes crucial in a multiple sample analysis,
such as a repeated measures design. A repeated measure design requires a single
reference curve, usually a curve obtained from the baseline sample, so that the
changes in the estimated parameters reflect the changes of the curves over time.

The second innovation is that this model is a piecewise function of the time
points, since the uphill and downhill curves of the T-wave need to be modeled sep-
arately. This is due to the nature of the T-wave because the physiologic causes of
deformation of the rise and of the decline of the T-wave can be quite distinct. This
method also generalizes to a model with more piecewise functions that describe
distinct shape changes over different time segments, allowing for more flexibility
in modeling the overall shape.

Using the model in (3), each T-wave in a given set of T-waves can be rewritten
as a transformation along fixed modes of variation from a reference curve. Further,
such a transformation can be well approximated by four parameters representing
these modes of variation. This simultaneously achieves significant dimension re-
duction of the data and a parametrization with physiological interpretations.

To estimate (3), minimize the sum of squares of the errors, that is, for each
beat i,

θ̂i = argmin
θi

∑
j

(
xi(tj ) − R(θi, tj )

)2
,

where R(θi, tj ) is as in (4). Standard nonlinear optimization is used to estimate the
parameters.

For computational accuracy and efficiency, the reference curves are centered
at the origin both to facilitate the comparison of the parameter estimates curve
to curve and also to minimize interpolation error. Since the support sets of the
reference curve, K, and of X, the set of observed T-waves, can differ due to changes
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in the slope parameters, the support set for K must be extended beyond the support
set of X to allow for interpolation at the endpoints. This causes interpolation error;
centering the reference curve minimizes the change in the support set and hence
reduces this error.

The multiplication factor
√

uidi in (3) also helps reduce the change in the sup-
port set for the same slope change, and hence reduces the interpolation error. Note
that when ui = di , this factor reduces to ui , which can be regarded as a norm-
preserving factor.

It is important to keep in mind that the interpretation of the four parameters
is that they represent the vertical shift, horizontal location and slope changes of
the WHOLE curve, not just any single point or small part of the curve. They give
equal weight to all the points on the curve, and thus represent the curve better than
measures that are taken from a few points on the curve, such as QT interval.

3.2. An illustration. A simple example illustrates how the model works.
A one-minute ECG record from the QT Database (Sel16265) with 66 beats is
shown in Figure 4. The surface plot of the T-waves of this sample shows the T-
waves “stacked” in sequence one behind the other. The color scale, used to accen-
tuate the “surface geography” of the 3D plot, goes from cooler (blues) to warmer
(reds) colors over the range from low to high. Beats are “stacked” in sequence one
behind the other. In order to distinguish both the sequence and the color progres-
sion within each single T-wave, the color has been extended downward as vertical
bars of the curve color. Visually, the common general character of these T-waves
is easily described, as is the variation among them. We apply the model and fit 66

FIG. 4. Surface plot of a sequence of T-waves of a sample ECG (the first-minute record of
Sel16265).
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FIG. 5. Original T-waves (dotted lines), reference curve (dashed lines) and fitted curves (solid
lines) for 4 beats of an ECG from the QT data base (Sel16265).

curves based on the reference curve that is obtained from the average of these 66
curves. Figure 5 shows the plots of the T-waves of 4 beats. The dashed lines are
the reference curve that is identical for all beats. The dotted lines are the original
T-waves and the solid lines are the fitted curves. Note that the vertical, horizontal
and slope changes are captured very well by the fitted curves.

3.3. Model robustness to marking of T-wave boundaries. Accurate determina-
tion of the end of the T-wave is widely acknowledged to be difficult. Therefore, a
model that is based on T-wave morphology rather than T-wave boundaries and that
is robust to marking those boundaries has great potential value. Figure 6 shows a

FIG. 6. Diagram of change in T-wave boundaries as a function of s; [a, b] is the T wave interval
by the standard software. s = −12,−4,+4,+12 msec (for ECG at 250 Hz).
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TABLE 1
Robustness of (û, d̂, m̂, ĥ) based on complete minute records for 9 normal subjects

Interval: Longest Shortest
[a − 12, b + 12] [a − 4, b + 4] [a,b] [a + 4, b − 4] [a + 12, b − 12]

median(�û)/û[a,b] 0.0048 0.0024 0 −0.0004 0.0010
stdev(�û)/û[a,b] 0.0243 0.0096 0 0.0065 0.0107

median(�d̂)/d̂[a,b] −0.0000 0.0009 0 0.0006 0.0002
stdev(�d̂)/d̂[a,b] 0.0204 0.0079 0 0.0055 0.0119

median(�ĥ)/ĥ[a,b] −0.0019 −0.0023 0 −0.0011 −0.0012
stdev(�ĥ)/ĥ[a,b] 0.0059 0.0063 0 0.0055 0.0064

median(�m̂)/m̂[a,b] −0.0005 −0.0000 0 −0.0000 −0.0001
stdev(�m̂)/m̂[a,b] 0.0058 0.0014 0 0.0012 0.0020
median(�m̂) 0.0131 msec 0.0544 msec 0 −0.0395 msec −0.1684 msec
stdev(�m̂) 0.3723 msec 0.1825 msec 0 0.2290 msec 0.5124 msec

T-wave with boundaries [a, b] marked using standard software. Let

[a′, b′] = [a + s, b − s],
s = −12,−4,4,12 msec. As s takes increasing values from −12 msec to +12
msec, the interval changes from the longest one [a − 12 msec, b + 12 msec] to
the shortest [a + 12 msec, b − 12 msec], and the model parameters also change.
Complete minute records of nine normal subjects are used for illustration. The
robustness of the four parameter estimates is shown in Table 1. û[a,b] is the estimate
of u at interval [a, b], �û is the difference between û at interval [a + s, b − s]
and û[a,b], that is, �û = û[a+s,b−s] − û[a,b]. The same definitions apply to d , m

and h. Indicated in the first column, each measure, median or standard deviation,
is adjusted by its scaling factor, to be comparable across parameters. Notice that
both the medians and the standard deviations are small and are roughly of the same
scale for all the parameters. For parameter m, the absolute change in the unit of
milliseconds is also shown.

A plot provided courtesy of an anonymous referee shows two T-waves, one fol-
lowing the placebo, the other following administration of a positive control (amox-
icillin). At hour 4, the percentage difference between uphill slopes for placebo and
amoxicillin (up and ua , respectively) is (up − ua)/up , approximately 0.111. The
downhill slope percentage difference ((dp − da)/dp) is roughly 0.156, the vertical
percentage difference is roughly 0.111, and the horizontal percentage difference is
roughly 0.083. Note that these differences substantially exceed the magnitude of
change in the parameter estimates under different settings of the T-wave bound-
aries, as shown in Table 1. Thus, the analysis of T-wave morphology is sufficiently
sensitive to detect these drug induced changes. The median and the standard de-
viation of �m̂, measured in milliseconds, also show that alteration of the T-wave
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boundaries do not present difficulties in the horizontal location estimate, given
that the minimum critical change in the QT (cut-off value) is orders of magnitude
higher, usually 10 milliseconds.

The 24 milliseconds range for s (altering the interval length over a range of 48
milliseconds) was chosen to establish robustness for (ui, di,mi, hi) over a broad
range for concern about QT prolongation based on FDA practice of seriously scru-
tinizing prolongations in excess of 10 milliseconds.

3.4. Relation of T-wave shape to QT. Effectively, the relationship between the
four parameters that describe changes in the shape of the T-wave and changes
in the QT interval is through translation and/or through flattening of the T-wave.
As shown in Figure 7, measurement of QT can be depicted by placing one beat
on a plane where the baseline matches the horizontal axis, t , and with the origin
placed at the initiation of the Q-wave. The QT interval then ends approximately
where the T-wave intersects the horizontal axis on its right. To see the relationship
between the four parameters and QT, first consider their relationship to be a (less
complicated) quadratic form:

K(t) = a(t − b)2 + c, a < 0, c > 0;(5)

QT can be calculated explicitly:

QT = b +
√

− c

a
.(6)

Let K̃(t) be the quadratic function written in the form of the model in (3),

K̃(t) =
{√

uidi

[
a
(
ui(t − mi) − b

)2 + c
] + hi, t ≤ mi ,√

uidi

[
a
(
di(t − mi) − b

)2 + c
] + hi, t > mi .

FIG. 7. To quantify the relationship between QT and four parameters, the ECG of one beat is
placed on a plane where the baseline matches the horizontal axis t , and the start of Q is placed at
the origin. For convenience, QT is measured from the origin to the point where the T-wave intersects
the horizontal axis on its right.
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Thus,

Q̃T =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

mi + b

ui

+ 1

ui

√
− c

a
− h

a
√

uidi

, t ≤ mi ,

mi + b

di

+ 1

di

√
− c

a
− h

a
√

uidi

, t > mi .

(7)

From (7) the dependence of QT on m is seen to be direct and positive, while
dependence on u and on d is inverse. The relationship of (h)1/2 to QT is direct,
but also involves both u and d . Therefore, when, as can occur in practice, the data
show ĥ to be correlated with û and/or d̂ , the observed QT may or may not exhibit
a positive simple correlation of QT with ĥ.

One example that serves as an illustration is a half-minute record (Sel103), an
arrhythmia from the QT Dataset (with QT calculated using ECGpuwave software
also available on www.physionet.org). Figure 8 shows the scatterplots of the pa-
rameter estimates and QT intervals. For this record, QT dependence on m̂ is evi-
denced in their positive correlation (r = 0.9632), indicating that the T-wave shifts
to the right to increase QT. The negative correlation between û and QT means
that as the uphill curve flattens, QT gets longer. This confirms expert qualitative
statements about T-wave changes.

FIG. 8. Four parameter estimates versus QT (Sel103) showing correlations with m̂ (positive) and
û (negative).

http://www.physionet.org
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FIG. 9. A sample ECG for patient Sel104.

4. Statistical inference. The principal objectives for a functional data analy-
sis approach to analyze sequential T-waves are as follows: (1) to use information
for the complete form of a T-wave, (2) to capture full information for an extended
series of beats, and (3) to define a low-dimensional parametrization model to use
in drawing statistical inferences.

Consider the problem arising in analysis of an arrhythmia: classification of beats
according to the shape of their T-waves. Clustering similar beats in ECGs is the
first step in identifying patterns of beats that characterize specific cardiac function
abnormalities. For example, if a cluster of similar beats is defined in terms of the
parameter h (and not dependent upon u, d or m), then the types of beats differ by
the T-wave heights, that is, by the signal intensity not by its pattern. In contrast,
multivariate-defined clusters differ according to the signal patterns and possibly
the signal intensity.

Figure 9 shows a sequence of the ECG tracing of an arrhythmia subject Sel104
from the QT Dataset (a four-minute record with 292 beats). Visually there are two
major types of beats: one type with normal T-waves and the other type with “S”
shape T-waves. Figure 10 shows that neither the beat length (RR: interval from

FIG. 10. Normal (circle) and abnormal (star) beats, plotted vs (a) RR and (b) QT.
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FIG. 11. Normal (circle) and abnormal (star) beats for a 4-minute record (292 beats) of Sel104,
plotted as time series of (a) û (b) d̂ (c) m̂ and (d) ĥ.

preceding R peak to succeeding one) nor QT successfully discriminates between
these two types of beats. (Here the QT intervals are obtained by applying ECG-
puwave software followed by confirmation or correction by expert review.)

Figure 11 shows the plots of û, d̂ , m̂ and ĥ in (a), (b), (c) and (d), respectively.
Observe that both d̂ and ĥ do well in separating these two groups. In fact, using
K-means clustering for d̂ , one can get two clusters that match (95.35% of beats)
with the two groups. û also does a fairly good job, but m̂ does not distinguish the
two groups.

An alternative method for modeling T-wave shape uses two Gaussians. Approx-
imation of a single T-wave as a mixture of two Gaussians can be quite precise
[Clifford (2006)]; this can be combined with a suitable algorithm to define the
end of T-wave in terms of a specified tail probability. However, this exercise is
(independent) curve fitting to individual beats, hence is not amenable to further
statistical inference.

Figure 12 plots the means (μ1,μ2) of the left and right Gaussians fitted as a
mixture. The left Gaussian which dominates the onset of the T-wave does not dis-
criminate between beat types. The right Gaussian which dominates extreme tail be-
havior is only partially successful, with an overall misclassification rate of 26.73%.
(By comparison, the overall misclassification rate using the four-parameter model
is 4.65%.) However, inferences about the typical shape of each type of T-wave
remains difficult. This is due in part to the number of estimated parameters (6 for
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FIG. 12. Normal (circle) and abnormal (star) beats, plotted vs (a) the first location parameter μ1
of a Gaussian model and (b) the second location parameter μ2 of a Gaussian model.

each beat) and in part to the instability of the parametrization. In fact, parametriza-
tion of the Gaussian model is not robust to small changes in T-wave shape, such
as those caused by noise. As an illustration, Figure 13 shows 2 T-waves in record
Sel104. The very slight difference in the last part of the two T-waves induces two
very different parametrizations. For the first T-wave in (a), the two Gaussian func-
tions are almost identical. The parametrization (λi, σ

2
i ,μi), where λi is the unnor-

malized mixing coefficient for the ith Gaussian, is (4.5102, 19.5607, 44.4245) for
the first Gaussian and (4.5102, 19.5588, 44.4265) for the second Gaussian; and
the two Gaussian curves are seen to overlap in Figure 13(a), while for the sec-
ond T-wave in (b) the two sets of parameters are quite different: (3.3558, 11.0680,
27.8644) and (6.9715, 18.7290, 55.7295), and the Gaussians separate as shown
in Figure 13(b). Thus, the parameters for the Gaussian model cannot accurately
reflect the degree of difference among curves, and hence do not make a good bio-
marker for analysis of T-wave shape or statistical inference about beat problems.

There are other methods that work well in classifying curves, such as wavelet-
based methods [Wang, Ray and Mallick (2007)], or even PCA; but neither wavelet
coefficients nor principal components of the curves help to understand the phys-
iological change in the shape of the T-wave. From the sequences of four para-
meter estimates one can obtain more information about the different shape of the
T-wave for different groups. For example, by inspecting Figure 11, one observes
that, among the two groups, one group has higher û (greater than 1), lower d̂ (less
than 1), lower ĥ and similar m̂ as the other. Note that for û and d̂ , 1 is a cut-off
value because when û > 1, the uphill curve is steeper than the reference curve,
elsewhere it is flatter. The same applies to d̂ . So it can be imagined that one group
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FIG. 13. Two similar T-waves (solid lines) in record Sel104, with two Gaussian functions (dashed
lines and dotted lines) fitted to each by the Gaussian model.

of beats has steeper uphill curve, flatter downhill curve and lower height than the
reference curve. The other group behaves conversely. The horizontal positions do
not distinguish the two. These descriptions match the true curves as shown in Fig-
ure 14.

Furthermore, one can obtain information about T-wave shape change by study-
ing the parameter estimates over beats as four time series. To study the frequency
components of these time series, one can obtain the power spectral density, shown

FIG. 14. The reference curve and typical curves of the two types of T-waves in Sel104.
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FIG. 15. The power spectral density of û, d̂ , m̂ and ĥ.

in Figure 15. Note that û, d̂ and ĥ all have peaks at 0.1265 Hz, 0.1429 Hz and
0.1592 Hz, corresponding to periods 7.9 sec (9.6 beats), 7 sec (8.51 beats) and
6.28 sec (7.64 beats). These are roughly the frequencies of the abnormal beats that
can be observed from the ECG chart. m̂ has a peak at 0.1674 Hz, corresponding to
5.97 sec (7.2 beats). Since m̂ is most correlated with RR among the four parame-
ters (see Figure 16), and regular changes in RR are usually related to breathing, a
reasonable guess is that this frequency reflects the breathing pattern of this subject.
Many other properties in the time domain and frequency domain can be studied as
well.

In order to make comparisons between time segments or between experimental
conditions, the QT measure needs to be adjusted by the RR (the inverse of the
heart rate) because of the relationship long-recognized between the two. Although
the literature on choices of adjustment function is extensive, no consensus has
been reached on the optimal “correction” or adjustment function. This may be at
least partially attributable to the disparity in changes in the QT and in the TQ
intervals with change in RR, especially in normal subjects. Adjustment methods
for the four-parameter model will depend on the direct relationship of the T-wave
shape and RR; and this relationship may differ between normal subjects or among
subjects with different known arrhythmias. Also, the dependence between RR and
the onset of T-wave shape alteration may exhibit a lag of several beats.

The first example, shown in Figure 16, is a four-minute record of an arrhythmia
subject Sel103 from the QT Dataset. Here û and RR are modestly negatively cor-
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FIG. 16. Correlations of four parameter estimates with RR (Sel103).

related, which means that as uphill curve gets flatter, RR gets longer. The positive
correlation of m̂ and RR means that the RR prolongation is generally related to a
T-wave shift to the right. Relationships of d̂ and ĥ with RR are not apparent in this
record. This data set benefits from a multivariate clustering approach since several
individual relationships between model parameter estimates and RR are accom-
panied by interdependencies among the parameters. Further analysis shows that
û and d̂ are negatively correlated in this case, that is, the uphill curve and down-
hill curve change their slopes in such a way as to keep the angle between them
relatively stable.

Different arrhythmias exhibit different patterns and may arise from different
causes; the four-parameter model enables inferences about these patterns. A sec-
ond example illustrates a different phenomenon. In this arrhythmia, the sequence
of beats can be shown to have an approximate periodicity. By representing this
record as a series of four-dimensional vectors (û, d̂, m̂, ĥ)′, the lag of principal
time-dependency can be established. Table 2 shows the correlation of each para-
meter at time t with RR at time t , t − 1, t − 2 and t − 3 for the 2nd minute of
the record of Sel123 from the QT Dataset. Note that all the parameters are most
strongly correlated with RR at (t − 2), indicating a two-beat lag between RR and
the altered T-wave. Thus, a longer beat is followed by alteration in the T-wave form
(shallower). Physiologically this may have explanation in terms of energy expen-
diture and the adequacy of the “rest” between the end of the T-wave and the onset
of the subsequent P-wave. The last row indicates that QT does not capture such a
phenomenon.
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TABLE 2
Correlation between the estimated model parameters

and current and previous RRs

RR t t − 1 t − 2 t − 3

û −0.3216 −0.4003 −0.7554 −0.3152
d̂ −0.4580 −0.6309 −0.7428 −0.3957
m̂ 0.3009 0.3419 0.4596 0.1900
ĥ 0.2410 −0.1825 −0.3977 0.0605
QT −0.0478 0.1953 0.1646 −0.0455

5. Discussion. Besides the applications mentioned in Section 4, there are oth-
ers such as outlier beat detection and discrimination between normal subjects and
arrhythmia subjects. One can detect outlier beats by treating the four parame-
ters’ values as four-dimensional vector data and applying standard outlier detec-
tion methods for multivariate data. Distinguishing arrhythmias from normal heart
rhythms can be done based on the patterns of variation in this four-dimensional
characterization. Work is ongoing to develop specific methodology to encompass
beat classification and analysis of the temporal process.

Methods for analyzing data with a general data structure described in Sec-
tion 2.2 depend on the purpose of the study. For the measurement of T-wave vari-
ation within each sample, for example, detection of outlier beats within a record,
the reference curve can be computed as the pointwise average curve for the record,
and the analysis is based on the parameter estimates for the curves in that record.
For multiple records of the same subject, a “super-reference curve” can be com-
puted, by analogy to MANOVA methodology, the parameter estimates using the
within-record reference curve and those computed using the super-reference curve
can be analyzed. (This approach inherits the same problems of unequal variances
and unequal sample sizes that are present in MANOVA analyses with essentially
the same solutions.)

For complex experiment designs with ECGs taken repeatedly over time and/or
under varying conditions, the actual time courses of T-wave changes as well as
variation may be the primary focus. (For example, in a study of a new drug, ECGs
may be conducted for each subject at a dozen time points each day beginning with
a baseline—none, placebo, positive control substance, drug, etc.) In such a case the
reference curves for individual records within each set form a data set of curves to
be studied. Once again, applying a functional analysis approach, a hyper-reference
curve can be computed (from the record reference curves) and analyzed.

The functional data approach used here could also be extended to alternative
choices of the reference curve. For example, robust methods could be applied to
reduce the influence of outlier beats. In the case when there are clusters of beats
varying by shape, such as in Figure 9, this approach may first be applied to cluster
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beats, as described in Section 4, then it is applied within each cluster to capture the
individual differences within the cluster.

Extension of the method proposed here to multi-lead ECG data is direct. Stan-
dard 12- or 16-lead ECGs provide spatial information about the heart as well as
redundancies and “check information.” Current work combines dimension reduc-
tion methods with this functional data modeling approach to more fully incorporate
the information from multiple leads without decreasing the signal-to-noise ratio. In
addition, since specific leads measure the electrical potential across different parts
of the heart, the extension to a higher dimensional model should lead to a more
general methodology and increase sensitivity to other aberrant cardiac behaviors.

6. Conclusion. In this paper functional data analysis is used to construct a
statistical model of ECG T-waves. This model makes the physiologically reason-
able assumption that there is a common primary shape (within subject) for the
T-waves and it uses four interpretable parameters to describe the individual devi-
ation of each beat from the common T-wave shape. The model accounts for the
entire T-wave morphology, making the estimation robust to the marking of T-wave
boundaries. Applications such as classification of beats were illustrated for this
model. Application of this model to measuring drug-induced change in T-wave is
intended, pending availability of control ECGs from actual QT studies.

Note: Programs in matlab to implement the method are available from the au-
thors. Please send requests by email to yingchun_z@yahoo.com.
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