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ABSTRACT

In this paper we study the impact of statistical disclosure limitation in the setting of

parameter estimation for a finite population. Using a simulation experiment with

microdata from the 2010 American Community Survey, we demonstrate a framework for

applying risk-utility paradigms to microdata for a finite population, which incorporates a

utility measure based on estimators with survey weights and risk measures based on

record linkage techniques with composite variables. The simulation study shows a special

caution on variance estimation for finite populations with the released data that are

masked by statistical disclosure limitation. We also compare various disclosure limitation

methods including a modified version of microaggregation that accommodates survey

weights. The results confirm previous findings that a two-stage procedure,

microaggregation with adding noise, is effective in terms of data utility and disclosure

risk.

KEY WORDS: American Community Survey; Data utility; Disclosure risk;

Microaggregation; Risk-utility paradigm; Replicate weights



1. INTRODUCTION

When disseminating public survey or census data, many national statistical agencies and

survey organizations publish the data in the form of tables, as well as records of

individual respondents, also known as microdata. Due to analysis flexibility and details of

the individual level information, a microdata set facilitates research by legitimate users,

persons who use data without attempting to violate privacy or confidentiality. However,

microdata can also be used by intruders, persons who try to reveal subjects’ identities or

values of sensitive variables (Cox et al. 2011). Therefore, statistical agencies must

balance disseminating high-quality data with protecting data confidentiality and data

subjects’ privacy.

Statistical agencies often mask actual values of microdata before release by means of

various statistical disclosure limitation (SDL) methods, such as adding noise, data

swapping and microaggregation. Typically, there can be multiple candidates for the final

data release, which arise from different choices of SDL techniques and their parameters,

or from different randomizations. As a framework to choose the best release, or at least

good releases, from the candidates, the so-called risk-utility (R-U) framework has been

studied extensively (Duncan and Stokes 2004; Gomatam et al. 2005; Cox et al. 2011).

The R-U framework helps the agencies find a feasible release between the two extremes of

zero risk when disseminating no data and maximum utility when releasing the original

dataset.

Despite the abundance of SDL literature, there has been limited attention to the role

of survey weights (or simply weights) in the context of data utility of masked data from

SDL implementation (Cox et al. 2011). In real world, datasets generated by simple

random sampling (SRS) are rare; for complex designs, respondents in the survey have

different weights. The base weights are typically set initially as inverses of the probability
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of selection, but “final weights” may also reflect such phenomena as nonresponse,

attrition in panel surveys, and poststratification. Weights are arguably not necessary for

some analyses of survey data (Fienberg 2009), but they are essential for estimating a

parameter of a finite population such as national total income. Most previous researchers

evaluated data utility after SDL methods without consideration of survey weights

(Fienberg 2009), for example, using simple (unweighted) mean estimator or K-L

divergence as utility measures.

In this paper we study impact of SDL methods on parameter estimation for a finite

population by a simulation experiment using microdata from the 2010 American

Community Survey (ACS). Comparing the variance estimators of original data and

masked data, we argue for special caution of using standard error estimator produced

from the masked data using replicate weights. We also demonstrate a framework for

applying risk-utility paradigms to survey data of a finite population, which incorporates

a utility measure based on estimators with weights and risk measures based on record

linkage techniques with composite variables. To accommodate survey weights, we

propose a modified version of microaggregation.

The remainder of the paper is organized as follows. In Section 2, we review some SDL

methods for microdata, the risk-utility frontier, and impact of releasing survey weights on

data disclosure. In Section 3, we present a risk-utility framework applicable to survey

samples of finite populations with the illustrative example using the 2010 ACS data.

Section 4 presents the results of the simulation studies. Lastly, Section 5 concludes the

paper with a brief discussion.
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2. BACKGROUND

2.1 Notations

We evaluate disclosure risk based on record linkage techniques. Similar to the notation of

Reiter (2005), let yil denote the value of variable l for record i, for l = 1, . . . , p and

i = 1, . . . , n. Denote the datafile of the originally reported values by D which consists of

n rows of yi = {yi1, · · · , yip}. We partition the vector of record i as (yA
i ,y

U
i ) where yA

i is

available to an intruder from his external datafile Dext as well as from the released

datafile Drel by the agency and yU
i is unavailable to the intruder except in Drel.

Denote the unique unit identifier of record i in the original datafile D by yi0, which is

never released by the agency, and the unit identifier of record j in Dext by yj0. To

disclose sensitive information of a target record, the intruder first attempts to identify

the target record j in Dext from Drel, i.e. to find i such that yi0 = yj0 (called

re-identification). To prevent this, the agency changes the values of yA
i into ỹA

i before

releasing with some protection methods. Now, Drel denotes the released datafile from

agency which consists of n rows of vectors ỹi = (ỹA
i ,y

U
i ).

2.2 SDL Methods for Microdata

In this section, we introduce some perturbative methods for microdata. This section is

not a comprehensive review of SDL methods, but rather background on a set of methods

studied previously in R-U settings (Karr et al. 2006; Oganian and Karr 2006; Woo et al.

2009; Cox et al. 2011). We refer readers to Willenborg and De Waal (2001) for other SDL

methods for microdata and further discussion.

Adding Noise. A number of authors propose to add random noise to numerical data

so that exact values of sensitive variables or subjects’ identities cannot be identified by
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(a) (b)

(c) (d)

Figure 1: Illustration of four SDL methods: (a) adding noise, (b) rank swapping, (c)
microaggregation, and (d) microaggregation with adding noise. Empty circles indicate the
original records and solid circles indicate the masked records after SDL. For rank swapping
in panel (b), only the variable of Y -axis is swapped. Panel (d) shows the two-step procedure
where ‘×’ represent the masked values by microaggregation and the solid circles represent
the values after adding random noise to ‘×’.
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intruders (Kim 1986; Sullivan and Fuller 1990; Tendick 1991). The masked record with

adding noise is given by ỹA
i = yA

i + εi, i = 1, . . . , n, where εi is the added noise.

Typically, εi is assumed to follow N(0, cnoise ΣA), where ΣA is the covariance matrix of

{yA
1 , . . . ,y

A
n} and cnoise is a positive constant. For example, Figure 1 (a) shows ỹA

i as

empty circles and yA
i as solid circles. As cnoise increases, the amount of disclosure

protection increases while data utility decreases.

Rank Swapping. Data swapping is to switch one or more attributes between

randomly selected pairs of records. As a special form of data swapping, Moore (1996)

suggests rank swapping to retain the dependence structure among variables. Instead of

arbitrary swapping, rank swapping allows switching values within a range defined by a

pre-determined parameter crank, with 0 < crank < 100. For each variable l in yA, the

method is implemented as follows:

(i) Sort {y1l, . . . , ynl} by its size and denote the sorted values by {y(1)l, . . . , y(n)l}.

(ii) Randomly pick up y(i)l and y(i′)l. If the percentage difference of the indices is less

than crank, i.e., |i− i′| < n crank/100, then swap the values and flag them.

(iii) Repeat (ii) with unflagged values until all records (or n− 1 records when n is odd)

are swapped.

Figure 1 (b) shows ỹi = (yUi , ỹ
A
i ) as empty circles and yi = (yUi , y

A
i ) as solid circles where

X-axis and Y -axis represent the sets of U and A, respectively, i.e., only the variable of

Y -axis is used for swapping. Rank swapping reduces disclosure risk because an intruder

cannot be certain that any record is real; yet, it often distorts data when crank is large,

and so reduces data utility.

Microaggregation. In microaggregation, the data are partitioned into groups, and

the original response yA
i is replaced by the average of subjects in its group Gi. Figure 1
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(c) shows an example of microaggregation. First, the original values represented by

empty circles are grouped by a clustering method. The dotted curve indicates each

cluster. Then, we calculate the average of the values in each cluster, which is represented

by a solid circle. Lastly, yA
i is replaced by the group average, i.e., ỹA

mic,i =
∑

i′∈Gi y
A
i′ /|Gi|,

where cmic = |Gi| is the cardinality of Gi. We refer readers to Fayyoumi and Oommen

(2010) for variants of microaggregation with different clustering methods.

Microaggregation With Adding Noise. Microaggregation does not change sample

means, but does decrease variances. As a solution to recover the variability taken out by

microaggregation, Oganian and Karr (2006) suggest a two-step procedure to combine

microaggregation and adding noise. Let ỹA
mic,i be masked records by microaggregation,

plotted as ‘×’ in Figure 1 (d), and let ỹA
i be the masked records by the two-step

procedure, microaggregation with adding noise, plotted as solid circles in the figure.

Then, the combined approach can be expressed as

ỹA
i = ỹA

mic,i + δi

where δi ∼ N(0,ΣMA) and ΣMA is the size of noise to recover variability lost during

microaggregation. Oganian and Karr (2006) suggest to use ΣMA = ΣA − ΣM where ΣM

denotes the covariance matrix of {ỹA
mic,1, · · · , ỹA

mic,n}.

2.3 Risk-utility Framework

The risk-utility framework helps a statistical agency to reason about identifying good, or

even optimal, released datasets among candidate releases created from different choices of

SDL methods or different parameters within a single SDL method, or different

randomizations. The framework is imperfect in the sense that, while it does tell an

agency how to think, it is often not concrete enough to tell the agency how to act (Cox
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et al. 2011). We employ it nevertheless.

There are three conceptual components to the R-U framework: a quantified measure

of disclosure risk, a quantified measure of data utility, and a value function that relates

the two. In Figure 2, the dots correspond to different candidate releases, each with a risk

measure and a utility measure. As the figure suggests, increasing utility is generally

associated with increasing risk. The contours, or indifference curves, of the value function

exhibit typical structure—value increases as risk decreases or utility increases, the other

held fixed. The convexity of these curves shows decreasing marginal returns. For

instance, when utility is high, a small increase in risk is acceptable only if there is a large

accompanying increase in utility.

Perhaps the most important feature in Figure 2 is the risk-utility frontier, which

consists of those candidate releases for which there is no other candidate that has both

higher utility and lower risk. This frontier is analogous to production possibility curves

or efficient frontiers in microeconomics. Of the eighteen candidates in the figure, the

three candidates on the frontier are the only ones that need to be considered as releases.

For every other candidate, there is a release on the frontier that dominates it in the sense

of having both higher utility and lower risk. A specific value function makes the agency

find the final release from three candidates; even if the agency is unable to specify a value

function, its decision has been simplified dramatically, as the agency only needs to

consider the three candidates on the frontier.

2.4 Impact of Survey Weights on Data Confidentiality

This paper deals with the impact of SDL on data utility for analyses involving survey

weights. It is also possible that the weights themselves threaten disclosure risk. To

illustrate, in the geographical aggregation analyses for use of chemicals (herbicides and

pesticides) on agricultural crops reported in Karr et al. (2001), the weights were the most
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Figure 2: Description of the R-U framework. The solid circles represent different candidate
releases. The solid line linking three circles indicates the risk-utility frontier. The dotted
curves are the indifference curves of the value function.
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sensitive values (more than then the chemical use levels), and were not released, although

the released summaries were weighted.

Weights may also contain information about design variables that are not released

(Willenborg and De Waal 1996; De Waal and Willenborg 1997). This problem is

demonstrated in Cox et al. (2011) where the original weights are tied closely to design

strata. However, a modification of microaggregation called indexed microaggregation, in

which the clustering is based on weights, but the response variables are altered, reduces

the risk substantially. In particular, the relationship between weight and stratum is

attenuated dramatically, but with almost no impact on estimates of means and

covariances. Poststratification is also an issue, because use of known population controls

can allow re-identification of data subjects (Willenborg and De Waal 1996, 2001).

On the other hand, Fienberg (2009) argues that only a few studies show that

releasing weights increases disclosure risk by non-negligible amount, and suggests instead

that model-based rather than design-based analyses would allow weights to be suppressed

and obviate risks associated with them.

3. RISK-UTILITY FRAMEWORK WITH THE AMERICAN

COMMUNITY SURVEY DATA

In this section, we propose a R-U framework applicable to the microdata from the 2010

American Community Survey data, which incorporates risk measures based on record

linkage using composite variables and a utility measure reflecting survey weights.

9



3.1 The American Community Survey

The American Community Survey (ACS) is an ongoing data collection by the U.S.

Census Bureau, about characteristics of the nation’s population and housing. Data are

collected from approximately three million housing units per year, mainly by mail, but

also with follow-ups by telephone or personal interviews (U.S. Census Bureau 2009). The

data files and the questionnaire are available at the ACS website,

http://www.census.gov/acs/www/.

The Census Bureau releases one-year, three-year and five-year estimates for states,

cities, counties and large population groups in the U.S. It also provides Public Use

Microdata Sample (PUMS) files, which contain 5% samples of records for individual

housing units. Inconsistent or missing responses are imputed by the subjects’ responses

to other items or hot-deck imputation.

The PUMS files contain weights, so that users can estimate characteristics of interest.

The Census Bureau provides estimates for selected characteristics in the ACS homepage

to assist data users in checking that the weights are correctly used in parameter

estimation. Following this approach, in our simulation study we estimate the population

mean per element of l-th variable Ȳl =
∑N

i=1 yil/N by

ȳ·l =

∑n
i=1wiyil∑n
i=1wi

(1)

where wi denotes the weight associated with the i-th record in the sample. Note that the

total population estimator N̂ =
∑n

i=1wi in the ACS is controlled so not subject to

sampling error.

For standard error estimation, there are two approaches introduced in analysis of

ACS PUMS data, the replication method and the design factor method (U.S. Census
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Bureau 2009, chap. 12). For the replication method, the Census Bureau provides R = 80

sets of replicates weights, constructed using successive difference replication (SDR, Fay

and Train 1995) where the variance estimator is obtained based on the squared difference

between two neighboring units. Let r denote the index of a replicate, and wi,r denote the

weight of record i in replicate r. For each replicate r, we calculate the replicate estimate

ȳ·l,r =
∑n

i=1wi,ryil/N̂ . Then, the standard error of ȳ·l is estimated by

SErep(ȳ·l) =

√√√√ 4

80

80∑
r=1

(ȳ·l − ȳ·l,r)2. (2)

The number of replicate weights R = 80 is equivalent to the order of a Hadamard matrix

used to produce replicate factors, and Equation (2) is based on the replicate variance

estimate in Fay and Train (1995). Note that the sampling fraction f = n/N is dropped

from the original expression of Fay and Train (1995). To produce the ‘final’ replicate

weights wi,r, all the weighing processes given to the survey weight wi, such as the

population control or raking, are also applied to the replicate base weight generated from

the SDR implementation.

The second approach in ACS PUMS variation estimation, called as the design factor

method, is to use a generalized variance formula which contains the design factor DF ,

given by

SEdes(ȳ·l) = DF ×

√
99

s2l∑n
i=1wi

. (3)

where

s2l =

∑n
i=1wiy

2
il − (

∑n
i=1wiyil)

2
/
∑n

i=1wi∑n
i=1wi − 1

.

The DF is calculated as the ratio of the variance estimator using the repletion method to

the hypothetical variance calculated under the assumption of SRS, to adjust the increase

in variance due to the actual sample design (U.S. Census Bureau 2009, chap. 12). The
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sampling rate for the PUMS file is approximately f = 1 percent, and the value 99 in the

equation represents the approximated value of the 1-year PUMS finite population

correction factor calculated by (100− f)/f .

3.2 Exploratory Analyses With the 2010 ACS PUMS Data

This section presents an exploratory analysis with the 2010 ACS PUMS data for the

state of North Carolina. The data consist of 95,531 persons from 41,674 housing units,

which represent the NC population with a size of 9,561,558. For our study, we choose five

income variables, wage or salary income (WAGP), self-employment income (SEMP), interest,

dividend, and net rental income (INTP), social security income (SSP), and a composite

variable given by a person’s total income subtracted by the sum of four income variables

above (OTHER). The variables are all continuous, but some records with point masses at

zero. SEMP and INTP are top and bottom-coded, and WAGP and SSP are top-coded only.

We adjust the dollar variables by applying the inflation adjustment factor whose value is

1.007624 for all sample cases for 2010 ACS (U.S. Census Bureau 2011).

In the ACS PUMS file, all income fields of persons under 15 years old are marked as

NA. Also, all persons under 16 years old have zero incomes for WAGP and SEMP. For

simplicity, we analyze a subset of the original data, which consists of n = 76, 450 persons

who are 16 years old or older from 41,649 housing units.

Table 1 shows the result of exploratory analyses which contains information about

top/bottom codings, the number of zeros, the number of negative values, the unweighted

average, the weighted average, the standard error from the replication method, and the

standard error from the design factor method.

Here are some observations from the exploratory analyses. First, we observe that

many income variables have zero values. Second, the weighted averages of the income

variables are usually smaller than the unweighted averages. The unweighted averages
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consider the contribution of all respondents equally, so some large values of people with

small weights can be exaggerated, while the weighted averages adjust the relatively small

impact of the large values on estimation. The histogram in Figure 3 shows how much the

weights vary. Lastly, the table provides standard errors with the two approaches

introduced in Section 3.1. It is shown that SEdes(ȳ·l) are generally larger than SErep(ȳ·l).

Note that, although both variance estimators are not unbiased, the Census Bureau

publishes SErep(ȳ·l) as the direct variance estimators, arguing that the variance estimator

is “accurate enough for analysis of the ACS data” (U.S. Census Bureau 2009, chap. 12).

Table 1: Exploratory analysis results of a subset of 2010 ACS PUMS file of North Carolina,
restricted to subjects who are 16 years old or older.

WAGP SEMP INTP SSP OTHER

top/bottom coding top top/bottom top/bottom top –

no. (%) of zeros
31,535 72,141 65,337 57,925 58,658

(41.2%) (94.4%) (85.5%) (75.8%) (76.7%)

no. (%) of neg.
0 213 215 0 0

(0.0%) (0.3%) (0.3%) (0.0%) (0.0%)

∑
i yil/n 22,383 1,369 1,605 2,932 3,377

ȳ·l =
∑

i wiyil∑
i wi

21,814 1,262 1,304 2,455 2,930

SErep(ȳ·l) 0.01 0.01 0.03 0.01 0.02

SEdes(ȳ·l) 0.01 0.05 0.05 0.01 0.02

3.3 Risk Measure

What is an appropriate measure of disclosure risk varies with data and context.

Characterizing intruder knowledge and behavior has long been recognized—and

remains—a very challenging problem (Cox et al. 2011). Fellegi and Sunter (1969) study a
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Figure 3: Distribution of weights of subjects in 2010 ACS PUMS file of North Carolina,
who are 16 years old or older.

theoretical framework for record linkage based on likelihood ratios—specifically, the ratio

of the conditional probabilities of matches and non-matches between a released record

and a target record is used. The Fellegi-Sunter framework has been studied by many

researchers, and was introduced to the area of SDL by Winkler (1998) and Lambert

(1993).

While appealing, the Fellegi-Sunter framework can be difficult to implement. It

requires (1) specification of a match score; (2) models for the distribution of the match

score conditional on both matches and non-matches; and (3) specification of thresholds

which classify the observed likelihood ratio as “match,” “non-match,” or requiring

manual review. As an alternative when there is no sound way to resolve any of these

questions, we adopt a distance-based record linkage techniques introduced in

Domingo-Ferrer et al. (2001), based on the Euclidean (or more complicated, such as

Hamming) distances between released records and target records.
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In a departure from the existing literature, we assume that linkage is done using

composite (sometimes also referred to as derived) variables rather than actual variables

in Drel. In our simulation study, we assume that the external datafile of intruder Dext has

true values of job income (JOB) which is the sum of WAGP and SEMP in the original

agency’s datafile D and true values of miscellaneous income (MISC) which is the sum of

INTP, SSP and OTHER in D. Our choice of these particular composite variables is

motivated by the fact that such information is often held by banks and credit rating

agencies.

In our simulation study, we use a distance risk measure (see Domingo-Ferrer et al.

2001) with the composite variables produced by the following procedure:

1. Calculate the distance between the target record yA
j in Dext and the released value

ỹA
i in Drel by

dj,i =

√ ∑
l∈{JOB,MISC}

(yAjl − ỹAil )2, ∀ i, j = 1, . . . , n.

2. Find the nearest unit ij and the second nearest unit i′j for each target unit j.

3. If yi0 of the nearest unit correctly matches with yj0 of the target unit, we say that

the target unit j is “linked.” If yij0 or yi′j0 matches with yj0, we say the target unit

j is “linked to the second nearest”.

Finally, there are two risk measures, PL is the percentage of target records

correctly linked to the nearest unit, and PL2 is percentage of target records

correctly linked to the second nearest units, i.e.,

PL = 100

∑
j∈Dext

I[ yj0 = yij0 ]∑
j∈Dext

1
(4)
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and

PL2 = 100

∑
j∈Dext

I[ yj0 = yij0 or yj0 = yi′j0 ]∑
j∈Dext

1
(5)

where I[·] is the indicator function which has the value one if the condition holds or

zero otherwise.

3.4 Utility Measure

Selection of appropriate utility measures is challenging, in part, because utility is specific

to data, analysis, and even analyst. Utility measures range from narrow and specific

measures to broad, but blunt, measures, with little middle ground (Karr et al. 2006).

In this paper, we focus on quality of the mean estimator of each variable and, for

illustration, propose the use of the total absolute deviation (TAD) as a utility measure,

TAD =
∑
l∈L

|ȳorig·l − ȳ
rel
·l | (6)

where ȳorig·l denotes the estimate of population mean of variable l of the form (1) with

Dorig, ȳ
rel
·l denotes the method-specific estimate with Drel which is processed by a SDL

method, and L = {WAGP, SEMP, INTP, SSP, OTHER}.

4. SIMULATION STUDY: ACS DATA

This section shows the simulation study and its results to illustrate SDL frameworks for

finite population data using a subset of the 2010 ACS PUMS data introduced in Section

3.
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4.1 Statistical Disclosure Limitation Methods

We apply four SDL methods introduced in Section 2.2 to the 2010 ACS PUMS data:

adding noise (Noise), rank swapping (Rank), microaggregation (Mic), and

microaggregation with adding noise (MicN). In the simulation study, we set different

degrees of masking with Noise and Rank by setting various values of cnoise and crank. For

Mic and MicN, we employ principal components projection as a multivariate ranking

method (Anwar 1993; Defays and Nanopoulos 1993) to make groups, each with the size

of cmic = 3. For this, we do principal component analysis with Dorig, and then cluster

records into groups by similarity of the first principal components. The size of the last

cluster can be more than three, but less than six.

“Traditional” microaggregation replaces the original attribute values by the simple

(unweighted) average of records in each micro-aggregated group. Specifically, suppose

that subject i is a member of group Gi that is determined by a projection method. Then,

the masked value for subject i under traditional microaggregation is given by

ỹold,i =

∑
i′∈Gi yi′

|Gi|
.

To accommodate weights, we propose to use weighted averages instead, given by

ỹnew,i =

∑
i′∈Gi wi′yi′∑
i′∈Gi wi′

.

Table 2 is a simple example comparing the two approaches. Assume that we cluster

the original values yi by their sizes into the groups Gi of |Gi| = 3. Then, we have three

groups, as shown in the table. The illustrative example shows that the masked records by

the traditional microaggregation ỹold,i (in the fourth column) preserve the unweighted

mean estimate of yi; yet, its weighted mean estimate differs from that of yi. By contrast,
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the released data with the modified version of microaggregation ỹnew,i (in the last column)

does not change the weighted mean estimate of {yi}. The indexed microaggregation

procedure discussed in Cox et al. (2011) is similar in concept to our proposed method.

Table 2: Comparison of a “traditional” microaggregation method and the proposed mi-
croaggregation method. wi denotes the weight, yi the original value, ỹold,i the micro ag-
gregated value using the standard (unweighted) method, and ỹnew,i the micro aggregated
value using the proposed (weighted) method.

Group Gi wi yi ỹold,i ỹnew,i

1 1 1 2 2.5
1 3 2 2 2.5
1 6 3 2 2.5
2 1 4 5 5.5
2 2 5 5 5.5
2 5 6 5 5.5
3 1 7 8.5 9
3 2 8 8.5 9
3 3 9 8.5 9
3 4 10 8.5 9∑
yi/n 5.5 5.5 6.0∑

wiyi/
∑
wi 15.9 14.5 15.9

4.2 Simulation Study for Variance Estimation

The first simulation study is to compare the mean estimates ȳ·l and the two types of

standard errors SErep(ȳ·l) and SEdes(ȳ·l) from masked datafiles Drel with some SDL

methods. We choose three SDL methods that have similar amount of disclosure

protection: adding noise with cnoise = 0.49 (Noise49), rank swapping with crank = 5

(Rank5) and microaggregation with cmic = 3 (MicN), whose values of PL are .40, .35 and

.39 for Noise49, Rank5 and MicN, respectively. We sample M = 20 replicates masked

datasets Drel,m from each method, where m = 1, . . . ,M .

Table 3 shows the averaged values of mean estimates and two standard errors over
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Table 3: Point estimators and variance estimators of Dorig and Drel. The selected SDL have
similar amount of disclosure protection; PLs of (Noise49,Rank5,MicN) are (.040,.035,.039).

θ̂

WAGP SEMP INTP SSP OTHER

Dorig 21,814 1,262 1,304 2,455 2,930

Noise49 21,780 1,263 1,312 2,453 2,932

Rank5 21,884 1,290 1,325 2,462 2,955

MicN 21,825 1,259 1,305 2,455 2,932

CVrep = SErep(θ̂)/θ̂

WAGP SEMP INTP SSP OTHER

Dorig .013 .004 .028 .005 .018

Noise49 .059 .301 .373 .077 .142

Rank5 .070 .456 .338 .057 .171

MicN .025 .228 .358 .048 .096

CVdes = SEdes(θ̂)/θ̂

WAGP SEMP INTP SSP OTHER

Dorig .010 .049 .049 .013 .019

Noise49 .012 .062 .061 .016 .024

Rank5 .010 .050 .049 .013 .019

MicN .010 .051 .051 .013 .019
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twenty replicate masked datasets Drel,m for each SDL. From the table, we see that MicN

and Noise49 produce the mean estimates close to those of Dorig while Rank5 results in

biased estimates. Specifically, Rank5 always overestimates the parameters. This happens

because the high values associated with small weights are swapped with small values

associated with high weight in the rank swapping method. It implies that rank swapping

is more ineffective in parameter estimation of population parameters than it is in

previous SDL literature, which does not consider sampling weights.

A more interesting observation from the table is that CVrep estimated from Drel are

far from those estimated from Dorig. This is because the construction of the replicate

weights is tied to the sampling design. As we change the original values with SDL

methods, the replicate weights are no longer associated with the same values as the

sampling weights are. As we see from mean estimate θ̂ in the first table, mismatch

between the masked values and sampling weights impacts on point estimation but the

biases from masking are not huge. However, the change of values combined with the

replicate weights impacts much on the variance estimation, which results in the poor

result of CVrep through all three SDL methods.

Now, we raise a question regarding the statement that SErep(ȳ·l) generally “produce

more accurate estimates of a standard error” than SEdes(ȳ·l) (U.S. Census Bureau 2011).

This statement seems valid when the original values are associated with the replicate

weights. However, if the reported values are changed by SDL, the impact is unpredictable

and may be significant, as the simulation study shows. In Table 3, CVdes of Drel are very

close to those of Dorig. Although it is originally assumed that CVrep of D are good

estimators of the true coefficients of variation, following SDL, CVdes of Drel are relatively

close to CVrep of D compared to CVrep of Drel.

One possible explanation is that the ACS replication methodology is based on a

specific sort order for the data, together with a selection of 780 row pairs from an 80× 80
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Hadamard matrix (U.S. Census Bureau 2009). When the data are subjected to SDL, this

relationship is broken, which may result in the problems noted above.

4.3 Illustrative Example of R-U Framework for a Finite Population Estimation

The second simulation study illustrates the R-U framework applied to a finite population

survey. We apply four SDL methods with different degrees of protection to the ACS

data. For adding noise, we use the different values of cnoise = (0.36, 0.49, 0.64). For rank

swapping, we set crank = (3, 5, 7). We sample M = 20 replicate masked datasets Drel,m

from Noise, Rank and MicN, while Mic has only one realization due to its non-random

character.

Table 4: Utility and risk measures of Drel from different SDL methods. Given the similar
degree of disclosure protection, Drel with MicN has the largest utility in terms of the total
absolute deviation (TAD) of the form in (6). The standard errors of TAD range from 6 to
14. Those of PL and PL2 range from .001 to .003.

Noise36 Noise49 Noise64 Rank3 Rank5 Rank7 Mic MicN

Inverse-utility

TAD 139 162 185 116 158 235 0 85

Risk

PL .05 .04 .03 .08 .04 .02 1.75 .04

PL2 .09 .07 .06 .15 .07 .05 3.42 .08

To compare the SDL methods, we calculate the risk measures and utility measure

introduced in Sections 3.3 and 3.4. In terms of utility only, Mic has the smallest value,

actually zero, of TAD as it exactly preserves the weighted mean of the original data as

shown in Table 2. However, the method does not work well in terms of disclosure

protection because it has the large values of PL and PL2. Adding noise with cnoise = 0.64

(Noise64) and rank swapping with cswap = 7 (Rank7) produces released data with the
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maximal level of data protection, but relatively low utility compared to the other

methods. MicN seems promising since it shows the minimum level of TAD compared to

the other methods with similar levels of PL and PL2, i.e., Noise49 and Rank5.

Figure 4 shows the inverse-utility measure (TAD) and a risk measure (PL) for

different SDL realizations. The plot suggests that MicN are generally superior to other

approaches. Especially, most realizations of MicN are located bottom-left corner, which

represent the largest utility with a moderate level of disclosure risk. This result is

consistent with Oganian and Karr (2006), in which microaggregation with adding noise

provided high-quality data while keeping disclosure risk low.

Agency must choose one of six realizations on the frontier – Mic lies on the frontier

but is not shown here due to the huge amount of its disclosure risk. Choice of the final

release depends on the agency’s indifference curve. For an agency caring only about risk,

the top-left value on the frontier representing a release from Rank7 will be selected. At

the other extreme, if only utility is under consideration, then the release from Mic (not

shown in the figure) would be chosen. For R-U value tradeoff exhibiting decreasing

marginal returns, i.e., convex curves of constant value as in Figure 1, the agency will

choose among the other four releases on the frontier from Rank7, Noise65, Noise49 and

MicN.

We note briefly some additional analyses whose results are not shown in this paper.

First, we implemented Mic and Micp with the traditional (unweighted) microaggregation

instead of the weighted microaggregation. Similar to the result in Table 2, the data

releases based on the traditional microaggregation method have large bias, and therefore

low utility. Second, z-scores projection approach was used as an alternative grouping

method for Mic and Micp instead of principal components projection. The results from

the z-score approaches are similar to those from principal components projection

approach shown in this paper. Finally, to assess generalizability of these results, we
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Figure 4: The risk-utility map with the replicate data sets from four SDL methods with
different parameters. Note that Y-axis represents the inverse of utility that is opposite to
that used in Figure 2. Therefore, the indifference value increases as a release approach to
the origin.

23



repeated the analysis using 2010 ACS data from Pennsylvania, which yielded very similar

results with those of North Carolina dataset.

5. CONCLUSIONS

In this paper we study the impact of statistical disclosure limitation on parameter

estimation considering weights and articulate a framework for applying R-U paradigms

for SDL in the setting of a finite population. The finite population setting is ubiquitous

in analysis of survey data, but the utility appropriate to the weighted estimator has not

previously been investigated.

In the course of developing the R-U framework with survey weights, we introduce

some innovations: a risk measure based on record linkage using composite variables and a

modified version of microaggregation that accommodates weights. We illustrate the

framework by means of an experiment using publicly released microdata from the 2010

ACS. The results confirm previous findings that microaggregation with adding noise is an

effective SDL strategy.

From the simulation experiment, we show that masked data from some SDL methods

result in point estimators of population mean that are close to those of original data.

However, variance estimator may be more impacted by SDL. Especially, the

agency-recommended variance estimation using replicate weights can be seriously biased

when it is performed using a masked dataset. It is possible that first performing SDL and

then constructing replicate weights may attenuate the problem, and this is a subject for

future research.
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