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Comparison Vector

« Given a pair of database records with partially
overlapping schemata, decide whether it is a
match or not.

 Compare the pairs of values stored in each
common attribute/field (assume n common
fields).

 The n comparison measurements form a
comparison vector X.



Record Comparison




Random Vector

e Even If a pair of records match, the observed
value for each field comparison is different
each time the observation is made.

* Therefore, each field comparison variable is a
random variable.

o Likewise, the comparison vector X Is a
random vector.



Distribution of Vectors

e Each pair of records Is expressed by a
comparison vector (or a sample) in an n-
dimensional space.

 Many comparison vectors form a distribution
of X in the n-dimensional space.

e Figure 1 shows a simple two dimensional
example of two distributions corresponding to
matched and unmatched pairs of records.
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Distributions of samples from matched
and unmatched record pairs.



Classifiers

 If we know these two distributions of X from past
experience, we can set up a boundary between these
two distributions, g(x1,x2)=0, which divides the two-
dimensional space into two regions.

* Once the boundary is selected, we can classify a
sample without a class label to a matched or
unmatched, depending on the sign of g(x1,x2).

 We call g(x1,x2) a discriminant function and a system
that detects the sign of g(x1,x2) a classifier.
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Learning

* |n order to design a classifier, we must study
the characteristics of the distribution of X for
each category and find a proper discriminant

function.
e This process Is called learning.

« Samples used to design a classifier are called
learning or training samples.



Statistical Hypothesis Testing

* What is the best classifier, assuming
that the distributions of the random
vectors are given?

* Bayes classifier minimizes the
probability of classification error.



Distribution and Density Functions

Random vector X e Unconditional density
function or mixture
Distribution function density funcEion
P(X) p(X)= 2RP(X)
i=1

Density function p(X)
* A posteriori density

Class | density or cnction PleIX X
conditional density of unction P(c;|X) or gi(X)

class i p(X|c;) or p;(X)
« Bayes rule



Bayes Rule for Minimum Error

e Let X a comparison vector.
 Determine whether X belongs to M or U.

 If the a posteriori probability of M given
X Is larger than the probabillity of U, X Is
classified to M, and vice versa.



Fellegi-Sunter Model

e Order X’'s based on their likelihood ratio

py (X)
* For a pair of error levels (4, A), choose
Index values n and n’ such that:

n-1

Zpu<><><u<2pu<><>

= =1

2 Pu(X)=A> ZIOM(Xi)

i=n i=n +1



Minimum Cost Model

e Minimizing the probabillity of error is not the
best criterion to design a decision rule
because the misclassifications of M and U
samples may have different conseguences.

* The misclassification of a cancer patient to
normal may have a more damaging effect
than the misclassification of a normal patient
to cancer.

e Therefore, it Is appropriate to assign a cost to
each situation.



Decision Costs

Cost Decision Class
Cim A, M
Ciy A, U
Cope A, M
C, A, U
Can Ag M
Cy A, U




Mean Cost (I)

(d=A,c=M) + ¢,
(d=A,,c=M) +c,,
(d=A;,c=M) + ¢y,

(d=A,cU) +
(d=A,,cU)+
(d=A;, c=U)




Bayes Theorem

P(d=A c=))=P(d=Afc=))P(c=))
wherel =1, 2,3andc=M ,U



Conditional Probability

P(d=Al=j) =) p,(X), wherei=1,2,3and c=M U

XOA

P(c=M )=r1, and P(c=U )=1-11,



Mean Cost (II)

Using the Bayes theorem:

C =cy, P(d=A|c=M)P(c=M) + c,,[P(d=A|cU)P(cU) +
C,y P(d=A,|c=M )P(c=M) +c,,[P(d=A,|cU)P(cU) +

c=M)P(c=M) +c,, [P(d=A,|cU)P(cU)

C,y P(d=
Using the definition of the conditional probability:
C =Cy D Py (X)E + ¢y 1) py (X)@-77,) +

XOA, XOA
Con DD Py (X)L, + ¢,y O py (X)A-71,) +
XOA, XOA,

Cau D Py (X)Ey + ¢4, ) py (X)-77,) +
XA XA



Mean Cost (lll)

C= > I pu (X)Cy, Ey+py (X)6y, [-77,)] +

XOA,

2 I pu (X)G,, T+ py, (X)8y, [@-77,)] +
XOA,

Z[ P (X)@SM I, + (X)@zu K]-_ﬂo)]

XA



Decision Areas

 Every sample X in the decision space A,
should be assigned to only one decision
class: A;, A, or A;.

 We should thus assign each sample to a
class in such a way that its contribution to the
mean cost IS minimum.

 This will lead to the optimal selection for the
three sets which we denote by A%, A%, AS°.



Decision Making

A sample Is assigned to the optimal
areas as follows:

To A if:
P (X)IE_LM Ek‘o+pu (X)@lu K]I-_ﬂo)S P (X)IEZM |ﬁo"'pu (X)@zu Iﬂ-_no)
P (X)@lM m-o"'pu (X)@lu Kjl-_r[o)S P (X)Esm Ek‘o"'pu (X)@su |ﬂ-_ﬂo)

To A if:
P (X)@zm Wo+pu (X)@zu K]I-_ﬂo)S P (X)IﬁlM m-o+pu (X)@lu K]-_no)
Py (X)@ZM Et‘o"'pu (X)@zu K]I-_ﬂo)S Py (X)@SM Wo"' Pu (X)@u |ﬂ-_ﬂo)

To A if:
P (x)@am |ﬁ‘o'k Pu (X)@au Kjl-_n-o)S Pw (x)@lM Wo+pu (X)@lu [(1‘”0)
Py (X)@SM Et‘0"'pu (X)@au ml-_ﬂo)S P (X)@ZM m-o'i'pu (X)@zu |ﬂ-_ﬂo)



Optimal Decision Areas

* We thus conclude from the previous
slide:

P T Fou G g Po o T S clM}

P 1_77 Cu —Cy

pu 7T, sz_ClM and. pu SM_CZM\

pM 1_77 C, —Cyy

X pu 7T, {SM_ClM and. pu 3m ~Com

P 1_77 Cy, —Cyy

P 1_77 Cyu —Cy

oy 1_7T Cou Cay |

Pw 1_7T Cou ~Cau



Threshold Values

Cipm SCop SCapy 5 Cyy 2C,, 2Cy
71, aM ~Cim
1_7To Ciu ~Cay

) = 7T 2m " Cim
1=, ¢y, —Cy

K =

71, am ~Com

1_7To Cou ~Cxu




Threshold Values

* In order for A,° to exist:

) = A V1Y < Ty Lam —Com _
I-rt, ¢y —Cy I/, Cyy—Cy

 \WWe can easily prove now, that threshold
K lies between A and L.



Threshold Values

_ Ty Lo Gy _
21=_"% oM . _ 71, _
1—7To C —Cy - quU = ) ECZM “m )

Ty, L£am Com ”o
—=A [{c,,—C,, )=——C,, —Cops )
171, C,,—C, U U /= T 3M  “2M

A<

e Adding by parts the relationships above, we
can easily show that A<k

e Similarly we can prove that kK < .



Optimality of the Model

€= 7(X)+ 2 Z,(X) + > z(X)=

XOA XOA, XUAg
> 1z(X) WM, (X)+2,(X) M, (X)+z,(X) @, (X)]2

XOA

S min{z,(X), ,(X), (X)) =
D z(X)+ 3 7,(X)+ > z(X)

XOA" XOA,® XOAS



Probabilities of Errors

e Type |
P(d=A,r=M) = P(d=AJr=M) [P(r=M)

= 7T DZ Py (X)

XOA 5

e Type Il
P(d=Ar=U) =P(d=A[r=U) [P(r=VU)
= (1-11,) szu (X)



Conditionally Independent
Binary Components

XX %o o X ]

P; (X)= P (Xl)m)J (Xz)’”pj (%)
where |=M U

Dy (X=D=p,

Dy (% =0)=1-p

0y (%=1)=0

0, (%=0)=1—-q




Conditionally Independent
Binary Components

Py (<), (X,)--py (X,)
Oy () (X3) - Py (X,)

0y (%) pu( Xo) . pu (X,)

Iogoi(xl,x2 ... X, )=log
\%

9 _
| %0 X )=
00, D )R8 oy T T % (%)




Conditionally Independent
Binary Components

* Note, that since x; can only assume the
values of O or 1:

N 1-q
10g P2 (x )=x TogP- + (1-x )Toge -
b, g Ty

gqiﬂ_pi) +lo 1_Qi
P (1_Qi) 1- P
GA-p) | Ny 0q G
log———
p.(1-q;) 2—1: 1-p

:)(Iﬂ]_')

|09?(X)—ZK g



Example

Records are being compared.

Three attributes: last name, first name and
Sex.

Two possible outcomes: agree and disagree.

Comparison vector contains eight
3-component vectors.



Probabillities of Agreement

and Disagreement

Attribute

Under M

Under U

P;

1-p,

i

1-q;

Last Name

0.90

0.10

0.05

0.95

First Name

0.85

0.15

0.10

0.90

Sex

0.95

0.05

0.45

0.55




Comparisons and Costs

X=X, %z, %3)
If attrbitute valuesagree

then

x=lelse x =0

Cim =

0, C,y =0.2, Cy, =1

Cu=l Cy=0.2, Cy=0
T, = 1-m, = 0.5



Decisions Made

i X Log(p/py) | Decision
1 (0,0,0) | 2.795 Ag
2 (0,0,1) | 1.429 Ag
3 (0,1,0) | 1.088 Ag
4 (0,1,1) |-0.272 A,
5 (1,0,0) | 0.562 A,
6 (1,0,1) |-0.804 A,
7 (1,1,0) |-1.145 A,
8 (1,1,1) |-2.511 A,




Experiments

Attribute |Under M [Under U

pi |1-pija |1-q
SSN 1.00 |0.00 |0.35 [0.65
FNAME 0.96 [0.04 |0.29 |0.71
MINIT 0.95 [0.05 |0.05 |0.95
LNAME 0.97 [0.03 |0.30 |0.70
STREET# |1.00 |0.00 |0.00 |[1.00
SADDRESS |0.77 |0.23 |0.01 [0.99
APRT# 1.00 |0.00 [0.00 |[1.00
CITY 0.89 [0.11 |0.06 |0.94
STATE 1.00 |0.00 [0.00 |[1.00
ZIPCODE |0.97 [0.03 |0.43 |0.75




Percent of Error VS. No of Records in A,

GID |cCyy Cou A Ul %Error | % of Recs
in A,
A 0.50 0.50 -0.2126 | -0.2126 |1.0013 |0.0000
0.40 0.60 -0.2126 | -0.2126 |1.0013 |0.0000
B 0.50 0.25 -0.3887 | 0.0884 |1.0013 |0.0000
0.50 0.05 -0.4914 | 0.7874 |1.0013 |0.0062
0.50 0.005 -0.5115 | 1.7884 |0.3650 |1.1692
0.50 0.0005 |-0.5134 |2.7874 |0.3602 |1.5797
C 0.25 0.25 -0.6897 | 0.2645 |0.9890 |0.0186
0.1 0.1 -1.1668 | 0.7416 |0.9890 |0.0186
0.05 0.05 -1.4914 | 1.0661 |0.9836 |0.0995
0.005 0.005 -2.5115 | 2.0862 |0.3471 |1.4553
0.0005 |0.0005 |-3.5134 |3.0882 |0.2028 |1.8720




Concluding Remarks

o Efficiency
e Time optimal models
e Prototype implementation



