A Decision Model for Cost Optimal Record Matching

Presenter: Vassilios S. Verykios

IST College / Drexel University

Affiliates Workshop on Data Quality

NISS/Telcordia - December 1st, 2000

Comparison Vector

- Given a pair of database records with partially overlapping schemata, decide whether it is a match or not.
- Compare the pairs of values stored in each common attribute/field (assume n common fields).
- The n comparison measurements form a comparison vector X.

Record Comparison

В Agreement Disagreement Missing 3

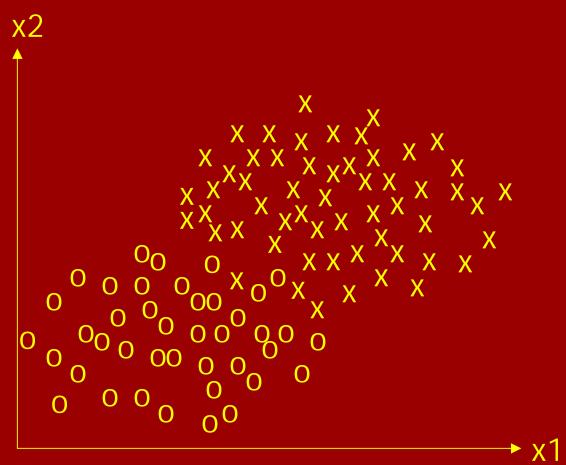
Random Vector

- Even if a pair of records match, the observed value for each field comparison is different each time the observation is made.
- Therefore, each field comparison variable is a random variable.
- Likewise, the comparison vector X is a random vector.

Distribution of Vectors

- Each pair of records is expressed by a comparison vector (or a sample) in an ndimensional space.
- Many comparison vectors form a distribution of X in the n-dimensional space.
- Figure 1 shows a simple two dimensional example of two distributions corresponding to matched and unmatched pairs of records.

Figure 1

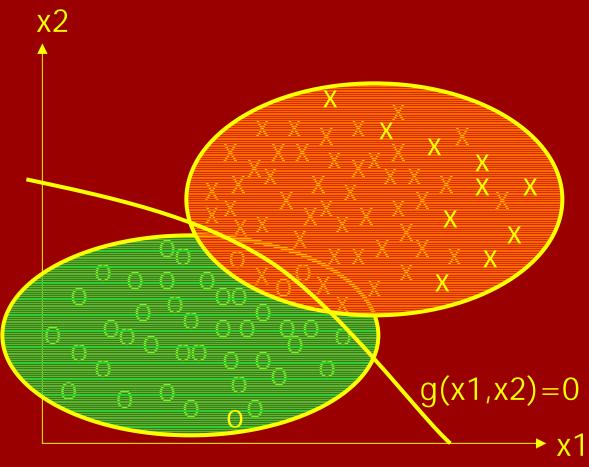


Distributions of samples from matched and unmatched record pairs.

Classifiers

- If we know these two distributions of X from past experience, we can set up a boundary between these two distributions, g(x1,x2)=0, which divides the two-dimensional space into two regions.
- Once the boundary is selected, we can classify a sample without a class label to a matched or unmatched, depending on the sign of *g*(*x*1,*x*2).
- We call g(x1,x2) a discriminant function and a system that detects the sign of g(x1,x2) a classifier.

Figure 2



Distributions of samples from matched and unmatched record pairs.

Learning

 In order to design a classifier, we must study the characteristics of the distribution of X for each category and find a proper discriminant function.

- This process is called *learning*.
- Samples used to design a classifier are called learning or training samples.

Statistical Hypothesis Testing

 What is the best classifier, assuming that the distributions of the random vectors are given?

 Bayes classifier minimizes the probability of classification error.

Distribution and Density Functions

- Random vector X
- Distribution function P(X)
- Density function p(X)
- Class i density or conditional density of class i p(X|c_i) or p_i(X)

 Unconditional density function or mixture density function

$$p(X) = \sum_{i=1}^{L} P_i p_i(X)$$

- A posteriori density function $P(c_i|X)$ or $q_i(X)$
- Bayes rule

Bayes Rule for Minimum Error

Let X a comparison vector.

Determine whether X belongs to M or U.

If the a posteriori probability of M given
X is larger than the probability of U, X is
classified to M, and vice versa.

Fellegi-Sunter Model

Order X's based on their likelihood ratio

$$l(X) = \frac{p_M(X)}{p_U(X)}$$

 For a pair of error levels (μ, λ), choose index values n and n' such that:

$$\sum_{i=1}^{n-1} p_U(X_i) < \mu \le \sum_{i=1}^{n} p_U(X_i)$$

$$\sum_{i=n}^{N} p_M(X_i) \ge \lambda > \sum_{i=n+1}^{N} p_M(X_i)$$

Minimum Cost Model

- Minimizing the probability of error is not the best criterion to design a decision rule because the misclassifications of M and U samples may have different consequences.
- The misclassification of a cancer patient to normal may have a more damaging effect than the misclassification of a normal patient to cancer.
- Therefore, it is appropriate to assign a cost to each situation.

Decision Costs

Cost	Decision	Class
C _{1M}	A ₁	M
C _{1U}	A ₁	U
C _{2M}	A_2	M
C _{2U}	A ₂	U
C _{3M}	A_3	M
C _{3U}	A_3	U

Mean Cost (I)

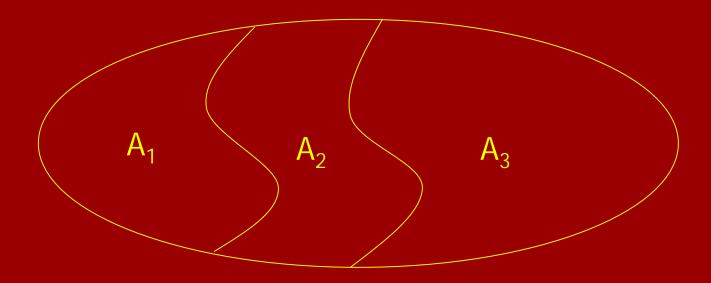
$$\overline{c} = c_{1M} \cdot P(d=A_1, c=M) + c_{1U} \cdot P(d=A_1, c=U) + c_{2M} \cdot P(d=A_2, c=M) + c_{2U} \cdot P(d=A_2, c=U) + c_{3M} \cdot P(d=A_3, c=M) + c_{3U} \cdot P(d=A_3, c=U)$$

Bayes Theorem

$$P(d=A_i,c=j)=P(d=A_i|c=j)\cdot P(c=j)$$

where $i=1, 2, 3$ and $c=M, U$

Conditional Probability



$$P(d=A_i|c=j) = \sum_{X \in A_i} p_j(X)$$
, where $i=1,2,3$ and $c=M,U$

$$P(c=M)=\pi_0 \text{ and } P(c=U)=1-\pi_0$$

Mean Cost (II)

Using the Bayes theorem:

Using the definition of the conditional probability:

$$\begin{split} \overline{c} &= c_{1M} \cdot \sum_{X \in A_1} p_M(X) \cdot \pi_0 + c_{1U} \cdot \sum_{X \in A_1} p_U(X) \cdot (1 - \pi_0) + \\ c_{2M} \cdot \sum_{X \in A_2} p_M(X) \cdot \pi_0 + c_{2U} \cdot \sum_{X \in A_2} p_U(X) \cdot (1 - \pi_0) + \\ c_{3M} \cdot \sum_{X \in A_3} p_M(X) \cdot \pi_0 + c_{3U} \cdot \sum_{X \in A_3} p_U(X) \cdot (1 - \pi_0) + \\ \end{split}$$

Mean Cost (III)

$$\begin{split} \overline{c} &= \sum_{X \in A_{1}} [p_{M}(X) \cdot c_{1M} \cdot \pi_{0} + p_{U}(X) \cdot c_{1U} \cdot (1 - \pi_{0})] + \\ &\sum_{X \in A_{2}} [p_{M}(X) \cdot c_{2M} \cdot \pi_{0} + p_{U}(X) \cdot c_{2U} \cdot (1 - \pi_{0})] + \\ &\sum_{X \in A_{3}} [p_{M}(X) \cdot c_{3M} \cdot \pi_{0} + p_{U}(X) \cdot c_{3U} \cdot (1 - \pi_{0})] \end{split}$$

Decision Areas

- Every sample X in the decision space A, should be assigned to only one decision class: A₁, A₂ or A₃.
- We should thus assign each sample to a class in such a way that its contribution to the mean cost is minimum.
- This will lead to the optimal selection for the three sets which we denote by A₁⁰, A₂⁰, A₃⁰.

Decision Making

 A sample is assigned to the optimal areas as follows:

$$\begin{split} &\text{To } A_{\rm I}^0 \text{ if:} \\ &p_{_{M}}(X) \cdot c_{_{1M}} \cdot \pi_{_0} + p_{_{U}}(X) \cdot c_{_{1U}} \cdot (1 - \pi_{_0}) \leq p_{_{M}}(X) \cdot c_{_{2M}} \cdot \pi_{_0} + p_{_{U}}(X) \cdot c_{_{2U}} \cdot (1 - \pi_{_0}) \\ &p_{_{M}}(X) \cdot c_{_{1M}} \cdot \pi_{_0} + p_{_{U}}(X) \cdot c_{_{1U}} \cdot (1 - \pi_{_0}) \leq p_{_{M}}(X) \cdot c_{_{3M}} \cdot \pi_{_0} + p_{_{U}}(X) \cdot c_{_{3U}} \cdot (1 - \pi_{_0}) \\ &\text{To } A_{_2}^0 \text{ if:} \\ &p_{_{M}}(X) \cdot c_{_{2M}} \cdot \pi_{_0} + p_{_{U}}(X) \cdot c_{_{2U}} \cdot (1 - \pi_{_0}) \leq p_{_{M}}(X) \cdot c_{_{1M}} \cdot \pi_{_0} + p_{_{U}}(X) \cdot c_{_{1U}} \cdot (1 - \pi_{_0}) \\ &p_{_{M}}(X) \cdot c_{_{2M}} \cdot \pi_{_0} + p_{_{U}}(X) \cdot c_{_{2U}} \cdot (1 - \pi_{_0}) \leq p_{_{M}}(X) \cdot c_{_{3M}} \cdot \pi_{_0} + p_{_{U}}(X) \cdot c_{_{3U}} \cdot (1 - \pi_{_0}) \\ &\text{To } A_{_3}^0 \text{ if:} \\ &p_{_{M}}(X) \cdot c_{_{3M}} \cdot \pi_{_0} + p_{_{U}}(X) \cdot c_{_{3U}} \cdot (1 - \pi_{_0}) \leq p_{_{M}}(X) \cdot c_{_{1M}} \cdot \pi_{_0} + p_{_{U}}(X) \cdot c_{_{1U}} \cdot (1 - \pi_{_0}) \\ &p_{_{M}}(X) \cdot c_{_{3M}} \cdot \pi_{_0} + p_{_{U}}(X) \cdot c_{_{3U}} \cdot (1 - \pi_{_0}) \leq p_{_{M}}(X) \cdot c_{_{2M}} \cdot \pi_{_0} + p_{_{U}}(X) \cdot c_{_{2U}} \cdot (1 - \pi_{_0}) \\ &p_{_{M}}(X) \cdot c_{_{3M}} \cdot \pi_{_0} + p_{_{U}}(X) \cdot c_{_{3U}} \cdot (1 - \pi_{_0}) \leq p_{_{M}}(X) \cdot c_{_{2M}} \cdot \pi_{_0} + p_{_{U}}(X) \cdot c_{_{2U}} \cdot (1 - \pi_{_0}) \\ &p_{_{M}}(X) \cdot c_{_{3M}} \cdot \pi_{_0} + p_{_{U}}(X) \cdot c_{_{3U}} \cdot (1 - \pi_{_0}) \leq p_{_{M}}(X) \cdot c_{_{2M}} \cdot \pi_{_0} + p_{_{U}}(X) \cdot c_{_{2U}} \cdot (1 - \pi_{_0}) \\ &p_{_{M}}(X) \cdot c_{_{3M}} \cdot \pi_{_0} + p_{_{U}}(X) \cdot c_{_{3U}} \cdot (1 - \pi_{_0}) \leq p_{_{M}}(X) \cdot c_{_{2M}} \cdot \pi_{_0} + p_{_{U}}(X) \cdot c_{_{2U}} \cdot (1 - \pi_{_0}) \\ &p_{_{M}}(X) \cdot c_{_{3M}} \cdot \pi_{_0} + p_{_{U}}(X) \cdot c_{_{3U}} \cdot (1 - \pi_{_0}) \leq p_{_{M}}(X) \cdot c_{_{2M}} \cdot \pi_{_0} + p_{_{U}}(X) \cdot c_{_{2U}} \cdot (1 - \pi_{_0}) \\ &p_{_{M}}(X) \cdot c_{_{3M}} \cdot \pi_{_0} + p_{_{U}}(X) \cdot c_{_{3U}} \cdot (1 - \pi_{_0}) \leq p_{_{M}}(X) \cdot c_{_{2M}} \cdot \pi_{_0} + p_{_{U}}(X) \cdot c_{_{2U}} \cdot (1 - \pi_{_0}) \\ &p_{_{M}}(X) \cdot c_{_{3M}} \cdot \pi_{_0} + p_{_{U}}(X) \cdot c_{_{3M}} \cdot \pi_{_0} \\ &p_{_{M}}(X) \cdot c_{_{3M}} \cdot \pi_{_0} + p_{_{M}}(X) \cdot c_{_{3M}} \cdot \pi_{_0} + p_{_{M}}(X) \cdot c_{_{3M}} \cdot \pi_{_$$

Optimal Decision Areas

We thus conclude from the previous slide:

$$A_{1}^{0} = \left\{ X : \frac{p_{U}}{p_{M}} \leq \frac{\pi_{0}}{1 - \pi_{0}} \cdot \frac{c_{3M} - c_{1M}}{c_{1U} - c_{3U}} \text{ and, } \frac{p_{U}}{p_{M}} \leq \frac{\pi_{0}}{1 - \pi_{0}} \cdot \frac{c_{2M} - c_{1M}}{c_{1U} - c_{2U}} \right\}$$

$$A_{2}^{0} = \left\{ X : \frac{p_{U}}{p_{M}} \geq \frac{\pi_{0}}{1 - \pi_{0}} \cdot \frac{c_{2M} - c_{1M}}{c_{1U} - c_{2U}} \text{ and, } \frac{p_{U}}{p_{M}} \leq \frac{\pi_{0}}{1 - \pi_{0}} \cdot \frac{c_{3M} - c_{2M}}{c_{2U} - c_{3U}} \right\}$$

$$A_{3}^{0} = \left\{ X : \frac{p_{U}}{p_{M}} \geq \frac{\pi_{0}}{1 - \pi_{0}} \cdot \frac{c_{3M} - c_{1M}}{c_{1U} - c_{3U}} \text{ and, } \frac{p_{U}}{p_{M}} \geq \frac{\pi_{0}}{1 - \pi_{0}} \cdot \frac{c_{3M} - c_{2M}}{c_{2U} - c_{3U}} \right\}$$

Threshold Values

$$\begin{split} c_{1M} \leq & c_{2M} \leq c_{3M}, \ c_{1U} \geq c_{2U} \geq c_{3U} \\ \kappa = & \frac{\pi_0}{1 - \pi_0} \cdot \frac{c_{3M} - c_{1M}}{c_{1U} - c_{3U}} \\ \lambda = & \frac{\pi_0}{1 - \pi_0} \cdot \frac{c_{2M} - c_{1M}}{c_{1U} - c_{2U}} \\ \mu = & \frac{\pi_0}{1 - \pi_0} \cdot \frac{c_{3M} - c_{2M}}{c_{2U} - c_{3U}} \end{split}$$

Threshold Values

• In order for A₂⁰ to exist:

$$\lambda = \frac{\pi_0}{1 - \pi_0} \cdot \frac{c_{3M} - c_{1M}}{c_{1U} - c_{3U}} \le \frac{\pi_0}{1 - \pi_0} \cdot \frac{c_{3M} - c_{2M}}{c_{2U} - c_{3U}} = \mu$$

• We can easily prove now, that threshold κ lies between λ and μ .

Threshold Values

$$\lambda = \frac{\pi_0}{1 - \pi_0} \cdot \frac{c_{2M} - c_{1M}}{c_{1U} - c_{2U}} \Rightarrow \lambda \cdot (c_{1U} - c_{2U}) = \frac{\pi_0}{1 - \pi_0} \cdot (c_{2M} - c_{1M})$$

$$\lambda \leq \frac{\pi_0}{1 - \pi_0} \cdot \frac{c_{3M} - c_{2M}}{c_{2U} - c_{3U}} \Rightarrow \lambda \cdot (c_{2U} - c_{3U}) \leq \frac{\pi_0}{1 - \pi_0} \cdot (c_{3M} - c_{2M})$$

- Adding by parts the relationships above, we can easily show that $\lambda \le \kappa$
- Similarly we can prove that $\kappa \leq \mu$.

Optimality of the Model

$$\begin{split} \overline{c} &= \sum_{X \in A_1} z_1(X) + \sum_{X \in A_2} z_2(X) + \sum_{X \in A_3} z_3(X) = \\ &= \sum_{X \in A} [z_1(X) \cdot I_{A_1}(X) + z_2(X) \cdot I_{A_2}(X) + z_3(X) \cdot I_{A_3}(X)] \ge \\ &= \sum_{X \in A} \min\{z_1(X), z_2(X), z_3(X)\} = \\ &= \sum_{X \in A_1^0} z_1(X) + \sum_{X \in A_2^0} z_2(X) + \sum_{X \in A_3^0} z_3(X) \end{split}$$

Probabilities of Errors

Type I

$$P(d=A_3,r=M) = P(d=A_3|r=M) \cdot P(r=M)$$

= $\pi_0 \cdot \sum_{X \in A_3} p_M(X)$

Type II

$$P(d=A_1,r=U) = P(d=A_1|r=U) \cdot P(r=U)$$

= $(1-\pi_0) \cdot \sum_{X \in A_1} p_U(X)$

Conditionally Independent Binary Components

$$X = [x_1 \ x_2 \cdots x_n]$$
 $p_j(X) = p_j(x_1) \cdot p_j(x_2) \cdots p_j(x_n),$
where $j = M, U$
 $p_M(x_i = 1) = p_i$
 $p_M(x_i = 0) = 1 - p_i$
 $p_U(x_i = 1) = q_i$
 $p_U(x_i = 0) = 1 - q_i$

Conditionally Independent Binary Components

$$\log \frac{p_{U}}{p_{M}}(x_{1},x_{2},...x_{n}) = \log \frac{p_{U}(x_{1}) \cdot p_{U}(x_{2}) \cdots p_{U}(x_{n})}{p_{M}(x_{1}) \cdot p_{M}(x_{2}) \cdots p_{M}(x_{n})}$$

$$\log \frac{p_{U}}{p_{M}}(x_{1},x_{2},...x_{n}) = \log \frac{p_{U}(x_{1})}{p_{M}(x_{1})} + \log \frac{p_{U}(x_{2})}{p_{M}(x_{2})} + \cdots + \log \frac{p_{U}(x_{n})}{p_{M}(x_{n})}$$

$$= \sum_{i=1}^{n} \log \frac{p_{U}(x_{i})}{p_{M}(x_{i})}$$

Conditionally Independent Binary Components

 Note, that since x_i can only assume the values of 0 or 1:

$$\log \frac{p_{U}}{p_{M}}(x_{i}) = x_{i} \cdot \log \frac{p_{i}}{q_{i}} + (1-x_{i}) \cdot \log \frac{1-q_{i}}{1-p_{i}}$$

$$= x_{i} \cdot \log \frac{q_{i} \cdot (1-p_{i})}{p_{i} \cdot (1-q_{i})} + \log \frac{1-q_{i}}{1-p_{i}}$$

$$\log \frac{p_{U}}{p_{M}}(X) = \sum_{i=1}^{n} x_{i} \cdot \log \frac{q_{i} \cdot (1-p_{i})}{p_{i} \cdot (1-q_{i})} + \sum_{i=1}^{n} \log \frac{1-q_{i}}{1-p_{i}}$$

Example

- Records are being compared.
- Three attributes: last name, first name and sex.
- Two possible outcomes: agree and disagree.
- Comparison vector contains eight 3-component vectors.

Probabilities of Agreement and Disagreement

Attribute	Under M		Under U	
	p _i	1-p _i	q_i	1-q _i
Last Name	0.90	0.10	0.05	0.95
First Name	0.85	0.15	0.10	0.90
Sex	0.95	0.05	0.45	0.55

Comparisons and Costs

$$X = (x_1, x_2, x_3)$$

if attribitute values agree
then $x_i = 1$ else $x_i = 0$
 $c_{1M} = 0$, $c_{2M} = 0.2$, $c_{3M} = 1$
 $c_{1U} = 1$, $c_{2U} = 0.2$, $c_{3U} = 0$
 $\pi_0 = 1 - \pi_0 = 0.5$

Decisions Made

i	Χ	Log(p _U /p _M)	Decision
1	(0,0,0)	2.795	A_3
2	(0,0,1)	1.429	A_3
3	(0,1,0)	1.088	A_3
4	(0,1,1)	-0.272	A_2
5	(1,0,0)	0.562	A_2
6	(1,0,1)	-0.804	A ₁
7	(1,1,0)	-1.145	A ₁
8	(1,1,1)	-2.511	A ₁

Experiments

Attribute	Under M		Under U	
	p_i	1-p _i	q_i	1-q _i
SSN	1.00	0.00	0.35	0.65
FNAME	0.96	0.04	0.29	0.71
MINIT	0.95	0.05	0.05	0.95
LNAME	0.97	0.03	0.30	0.70
STREET#	1.00	0.00	0.00	1.00
SADDRESS	0.77	0.23	0.01	0.99
APRT#	1.00	0.00	0.00	1.00
CITY	0.89	0.11	0.06	0.94
STATE	1.00	0.00	0.00	1.00
ZIPCODE	0.97	0.03	0.43	0.75

Percent of Error VS. No of Records in A₂

GID	C _{2M}	C _{2U}	λ	μ	%Error	% of Recs in A ₂
А	0.50	0.50	-0.2126	-0.2126	1.0013	0.0000
	0.40	0.60	-0.2126	-0.2126	1.0013	0.0000
В	0.50	0.25	-0.3887	0.0884	1.0013	0.0000
	0.50	0.05	-0.4914	0.7874	1.0013	0.0062
	0.50	0.005	-0.5115	1.7884	0.3650	1.1692
	0.50	0.0005	-0.5134	2.7874	0.3602	1.5797
С	0.25	0.25	-0.6897	0.2645	0.9890	0.0186
	0.1	0.1	-1.1668	0.7416	0.9890	0.0186
	0.05	0.05	-1.4914	1.0661	0.9836	0.0995
	0.005	0.005	-2.5115	2.0862	0.3471	1.4553
	0.0005	0.0005	-3.5134	3.0882	0.2028	1.8720

Concluding Remarks

- Efficiency
- Time optimal models
- Prototype implementation