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ABSTRACT 
 
Classification into groups using terms available in the 
data underlies machine learning, information retrieval, 
and record linkage.  Classifiers such as Bayesian 
networks in machine learning and term weighting in 
information retrieval depend primarily on training data 
sets for which truth is known.  These classifiers may be 
relatively slow to adapt to new situations in which new 
data have characteristics significantly different from the 
training data.  Record linkage has been characterized by 
data in which training data can differ significantly from 
new data being classified.  By using structuring ideas 
introduced by Fellegi and Sunter in their classic 1969 
JASA paper, record linkage researchers have been able to 
apply the EM algorithm and Markov Chain Monte Carlo 
ideas to make classifiers automatically adapt to new data.  
We show how these ideas can be used to improve the 
learnability of Bayesian networks.  We also use some of 
the ideas from machine learning that are superficially 
related to boosting to show how non-naïve Bayesian 
classifiers can make better use of training data. 
 
1.   INTRODUCTION 
   This paper covers classification of data into groups 
using textual information.  In machine learning, text 
classification is used for classifying documents into 
categories.  For newspaper articles, the categories might 
be different subject classes such as crude oil, acquisitions 
of companies, and international trade.  For industry and 
occupation coding, the categories might be the first two or 
three digits of the North American Industrial Code.  For 
disease and treatment, the categories might be polio, 
meningitis, or common flu and the text information might 
be extended to numerical categories corresponding to 
disease symptoms and responses to certain tests.  In 
information retrieval, the text might be queries related to 
subjects that are used for a library search or an internet 
search.  In record linkage, the categories might simply be 
the determination that a pair of records from two lists 
represents the same entity (is a match) or is not the same 
entity (non-match).  Although some of the methods in 
machine learning such as nearest neighbor matching and 
neural nets originated with numeric data, this paper only 
considers nonnumeric data.    
   In machine learning and information retrieval, general 
text information is used for classifying.  The information 
might be the title and first few paragraphs from a 
document or a set of query words.  Record linkage 

typically has more structured information.  Name and 
address parsing and standardization software puts person 
names and addresses into specific locations.  First names 
can then be compared with first names, house numbers 
with house numbers, and street names with street names.  
Business names and person names cannot always be 
parsed into components that can be effectively compared.  
For instance, it is difficult to compare ‘J K Smith and Co’  
with ‘JKS Inc’  without special rules and the help of 
corresponding addresses and other information. 
   Machine learning and information retrieval typically use 
training data for which the true classification status is 
known.  The training data are used to develop a 
vocabulary that is used for comparing documents.  
Commonly occurring words such as ‘ the’  that appear in 
most documents are removed via stoplists.  Stemming 
may be to different words such as ‘acquire’ , ‘acquires’ , 
‘acquired’ , and ‘acquiring’  into one class ‘acquire’  
making it easier to compare and use words.  The 
vocabulary creates the structure of words.  The words in 
the vocabulary typically occur in individual classes.  The 
vocabulary is used to separate each class from other 
classes.  Record linkage uses simpler stemming in which 
variants of words such as ‘ road’ , ‘drive’ , ‘p.o. box and 
‘doctor’  are given common spellings.   Because of the 
additional structure of knowing what words to compare, 
record linkage has not always needed training data.  
Guesses of some record linkage parameters can 
sometimes yield suitable decision rules.   
   Various methods in machine learning such as Bayesian 
networks make use of the relative frequencies of the 
occurrence of words in documents.  The term weighting 
model of Salton (e.g. Salton and McGill 1983, Salton 
1991) in information retrieval makes explicit use of the 
relative frequencies and has enhancements that allow the 
updating of the frequencies as additional data is 
processed.  The original record linkage models of 
Newcombe (1959) made explicit uses of the relative 
frequencies of commonly occurring words such as 
‘Smith’  and infrequently occurring words such as 
‘Zabrinsky.’    
   Fellegi and Sunter (1969) provided a formal 
mathematical model for record linkage and gave general 
proofs of the optimality of the methods.  The record 
linkage theory and decision rules correspond precisely to 
Bayesian networks in machine learning (Mitchell 1997, 
Nigam, McCallum, Thrun, and Mitchell 2000).  In 
practice, it is difficult to estimate accurately the 
probabilities associated with the decision rules in record 



linkage and Bayesian networks.  Fellegi and Sunter 
(1969) gave a method for automatically estimating record 
linkage parameters without training data.  For the 
automatic estimation method to be valid, certain implicit 
assumptions about the structure of the data are required.  
The assumptions deal with the homogeneity of 
relationships of terms within classes and the mutual 
dependencies of terms.   
   To make computational more tractable, Fellegi and 
Sunter made a conditional independence assumption that 
corresponds to the naïve Bayes assumption for Bayesian 
networks.  The assumption (made explicit later in this 
paper) is that the presence of one word in a class is 
independent on another word in a class.  The assumption 
is that P(crude,oil | C1) = P(crude | C1) P(oil | C1).  In 
record linkage the analogous assumption is that P(agree 
on last name Smith, agree on first name Robert | C1) = 
P(agree on last name Smith | C1) P(agree on first name 
Robert | C1).  Winkler (1988) and Nigam et al. (2000) 
have shown how to use the EM algorithm (Dempster, 
Laird, and Rubin 1977) to obtain parameters 
(probabilities) for the classification decision rules in 
record linkage and Bayesian networks, respectively.  
Winkler (1989a, 1993) extended the EM procedures to 
situations where conditional independence does not hold 
and where convex constraints could be imposed on the 
parameters based on prior knowledge.  For some 
applications, optimal record linkage parameters can be 
obtained automatically without training data.  For a major 
Census application, the U.S. is divided into 550 areas and 
matched within three weeks (Winkler and Thibaudeau 
1991).  The optimal parameters vary substantially across 
areas.   
   In the applications of Nigam et al. (2000), suitable 
training data are necessary to create structure for the EM 
algorithm.  Nigam et al. combine labeled training data 
with unlabeled additional data.  They show that, if 
moderate amounts of training data are combined with the 
proper amounts of additional unlabelled data, 
classification decision rules are improved.  They show 
that, if a small amount of training data is combined with a 
large amount unlabelled data, then decision rules will 
likely be poor.  The intuition might be that a certain 
number of representative words are needed to represent 
classes.  To get a sufficient number of words and 
documents to represent a class, a sufficiently large 
training sample is needed.  If only unlabelled documents 
are used (referred to as unsupervised learning, Mitchell 
1997), then the resultant classes may be very unlike the 
classifications that are ultimately needed.  For exploratory 
purposes, unsupervised learning is used in data mining 
applications.   
   The formal mathematical model of Bayesian networks 
(Nigam et al. 2000) and the original model of Fellegi and 
Sunter (1969) are appealing because accurately estimated 
probabilities give good estimates of the error rates.  As 

shown by Fellegi and Sunter, optimal decision rules can 
be obtained under a large range of error rates.  In practice, 
because the underlying true probabilities have not been 
accurately estimated, estimated error rates are not 
accurate (Belin and Rubin 1995, Nigam et al. 2000).  
Classification decision rules, however, may still be good.  
Belin and Rubin (1995) gave an alternate EM-based for 
estimating error rates in a narrow range of situations.  
Winkler (1993, 1994) has shown the general EM 
procedures that account for dependencies can yield 
accurate estimates of error rates and highly accurate 
decision rules in some situations.  
   Although the original work of Nigam et al. (2000) 
appeared very promising, recent work by Yang and Liu 
(1999) has shown that new variants of other methods in 
machine learning work consistently better than Bayesian 
networks with a variety of representative test decks.  
Yang and Liu indicated that the comparisons in Nigam et 
al. were not entirely appropriate because they did not use 
entire sets of test data.  Rather, Nigam et al. only used the 
largest classes in test decks such as the Reuters collection 
(e.g., Lewis and Ringuette 1994).  Yang and Liu showed 
that methods such as Support Vector Machines (SVM), k-
nearest neighbor (kNN), and Linear Least Squares Fit 
(LLSF) all worked better according to a variety of 
statistical measures on several test decks.   Whereas 
Bayesian networks and Neural nets performed more 
poorly than SVM, kNN, and LLSF, Yang (1999) had 
shown that they typically perform better than other 
competing classifiers in the machine learning literature. 
   It is the intent of this paper to demonstrate how 
Bayesian network classification can be improved.  The 
comparisons are between variants of Bayesian networks 
that account for dependencies and naïve Bayesian 
networks (for which conditional independence is 
assumed).  No specific comparison to SVM, kNN, and 
LLSF will be done.  Set-covering algorithms are used to 
obtain parsimonious vocabularies that cover most 
documents in each class.  This improves understandings 
of the specific words that are needed for classification.  
With a parsimonious vocabulary, set-covering algorithms 
are again used to obtain small candidate sets of words 
within each class for which interactions are modeled.  The 
smaller sets of words and small sets of interactions make 
it easier to estimate accurate probabilities and error rates. 
    The outline of the papers is as follows.  Following the 
introduction, the second section gives background on 
some of the models of machine learning, some of the 
models in information retrieval, and the Fellegi-Sunter 
model of record linkage.  Most of the background is on 
Bayesian networks and record linkage.  The other models 
in machine learning are used to develop intuition.  In 
particular, SVM and kNN implicitly make use of 
dependencies which may account for some of the better 
performance observed by Yang and Liu (1999).  
Information retrieval is only covered in terms of its 



relationship to machine learning and record linkage.  In 
the third section, the theory associated with the specific 
parameter estimation methods for non-naïve Bayesian 
networks is presented.  The theory is a special case of 
methods in the record linkage model of Fellegi and Sunter 
(Winkler 1993).  The fourth section describes the Reuters 
test deck and the set-covering algorithms that are used to 
obtain a vocabulary (e.g., Lewis 1992).  Yang and 
Pederson (1997) have extensively described methods for 
obtaining vocabularies.  In the fifth section, results 
comparing the ten classes used in Nigam et al (2000) are 
presented.  The sixth section gives discussion and the 
final section is concluding remarks. 
 
2.  BACKGROUND 
   The background is divided into description of the 
Fellegi-Sunter model of record and shorter descriptions of 
information retrieval and machine learning. 
2.1. Fellegi-Sunter Model of Record Linkage 
   Fellegi and Sunter (1969) provided a formal 
mathematical model for ideas that had been introduced by 
Newcombe (1959, 1962, see also 1988).  They provided 
many ways of estimating key parameters.  To begin, 
notation is needed.  Two files A and B are matched.  The 
idea is to classify pairs in a product space A �  B from two 
files A and B into M, the set of true matches, and U, the 
set of true nonmatches.  Fellegi and Sunter, making 
rigorous concepts introduced by Newcombe (1959), 
considered ratios of probabilities of the form: 
 
      R =  

��� � ���	��

��� � �����
                  (1)   

 
where  is an arbitrary agreement pattern in a comparison 
space ��������� ���! #"$��%'&'( )*� +-,. /%'�����0� �! /�213&'� +-,. 546"$  #&$�7���
representing simple agreement or not on the largest name 
component, street name, and street number.  
Alternatively, each 8  might additionally account for 
the relative frequency with which specific values of name 
components such as "Smith", "Zabrinsky", "AAA", and 
"Capitol" occur.  The ratio R or any monotonely 
increasing function of it such as the natural log is referred 
to as a matching weight (or score). 
   The decision rule is given by: 
 
   If R  > Tµ, then designate pair as a match. 
 
   If Tλ ≤ R ≤ Tµ, then designate pair as a possible match 
        and hold for clerical review.                               (2) 
 
   If  R < Tλ, then designate pair as a nonmatch. 
 
The cutoff thresholds Tµ  and Tλ  are determined by a 
priori error bounds on false matches and false 
nonmatches.  Rule (2) agrees with intuition.  If 9  
consists primarily of agreements, then it is intuitive that 

:  would be more likely to occur among matches than 
nonmatches and ratio (1) would be large.  On the other 
hand, if ;  consists primarily of disagreements, then 
ratio (1) would be small.  Rule (2) partitions the set <  
into three disjoint subregions.  The region Tλ ≤ R ≤ Tµ is 
referred to as the no-decision region. 
   Pairs with weights above the upper cut-off are referred 
to as designated matches (or links).   Pairs below the 
lower cut-off are referred to as designated nonmatches (or 
nonlinks). The remaining pairs are referred to as 
designated potential matches (or potential links).   If Tµ  = 
Tλ, then decision rule (1) can be used for separating 
records (correspondingly documents) into those that are in 
one class from those that are not.  The probabilities 
P(agree first | M), P(agree last | M), P(agree age | M), 
P(agree first | U), P(agree last | U), and P(agree age | U) 
are called marginal probabilities.  P(   | M) & P(   | U) are 
called the m- and u-probabilities, respectively.  The 
natural logarithm of the ratio R of the probabilities is 
called the matching weight or total agreement weight.  
The logarithms of the ratios of probabilities associated 
with individual fields (marginal probabilities) are called 
the individual agreement weights.  The m- and u-
probabilities are also referred to as matching parameters.   
A false match is a pair that is designated as a match and is 
truly a nonmatch.  A false nonmatch is pair designated as 
a nonmatch and is a truly a match. 
   Fellegi and Sunter showed that it is possible to compute 
the unknown m- and u- probabilities directly in the 3-
variable, conditional independence case.  More generally, 
in the conditional independence situation, the parameters 
can be computed via a straightforward application of the 
EM algorithm (Winkler 1988).  If the conditional 
independence assumption does not hold, then the 
parameters can be computed by generalized EM methods 
(Winkler 1988, 1989a, 1993b, Armstrong and Mayda 
1993, see also Meng and Rubin 1993), by scoring 
(Thibaudeau 1993), and by Gibbs sampling (Larsen 1996, 
Larsen and Rubin 2000).  The methods of Larsen and 
Rubin (2000) are the most general.   These methods can 
yield more accurate matching parameters and better 
decision rules.  These parameter-estimation methods do 
not always yield sufficiently accurate probability 
estimates for estimating record linkage error rates.  A 
false match error-rate estimation method that is somewhat 
supplemental to these is due to Belin and Rubin (1995).  
Although the method of Belin and Rubin requires 
calibration data, it is known to work well in a narrow 
range of situations (Winkler and Thibaudeau 1991, 
Scheuren and Winkler 1993).  The situations are those in 
which there is substantial separation of the curves of log 
frequency versus matching weight for matches and 
nonmatches.   
   Because record linkage must merge large administrative 
files (as many as 550 million records versus 300 million 



records), it cannot have training data that consists all 
possible words.   
2.2. Information Retrieval 
   Methods of information retrieval are often associated 
with library science applications in which a user puts in a 
query consisting of a set of words.  The query words are 
matched against a set of keywords in order to bring back 
documents that agree with the query words.  The retrieved 
documents may receive a score based on how many 
words in the document match the query words and 
weights that are assigned to each query word.  A number 
of information retrieval models are described in Frakes 
and Baeza-Yates (1992).  The book has excellent chapters 
covering stoplists, lexical analysis, and stemming.  A 
stoplist is a listing of words such as ‘ the,’  ‘ in,’  and ‘who’  
that are commonly occurring in most or all documents 
and that have little ability to distinguish documents into 
classes.  In record linkage, an analogous concept is to 
eliminate words such as ‘The,’  ‘Corporation,’  and 
‘Company’  in business names.  Stemming replaces words 
such as ‘engineered,’  ‘engineering,’  and ‘engineer’  into a 
common word class such as ‘engineer.’   In record linkage, 
variations in the spellings of a word in a street address 
such as ‘Drive,’  ‘Dr,’  ‘Drrive,’  are replaced by a common 
spelling such as ‘Dr.’  
   The term query model used in information retrieval uses 
an appropriate set of words in documents to determine 
whether a returned document is relevant or not.  An initial 
set of words is put in a query by a user.  The documents 
are judged relevant or not by the user.  The appropriate set 
of words can be given weights 
 
  Wij = log ((n_r/(R-n_r))/((n-n_r)/(N-n-R+n_r)))    (3) 
 
where Wij is term weight for term (word) i in query j, n_r 
is the number of relevant documents for query j having 
term i, R is the total number of relevant documents for 
query j, n is the number of documents in the collection 
having term I, and N is the number of documents in the 
collection.  The weights Wij in (3) can be used in a new 
set of queries for which relevance determination is done 
and new re-weightings with the resultant new set of terms 
(words) is performed.   The reweighting to improve 
information retrieval is called relevance feedback.  The 
weighting methods given above are almost identical to 
those introduced for record linkage by Newcombe 
(Newcombe et al. 1959, Newcombe et al. 1962). 
   Several measures are used to measure accuracy.  
Precision p is the probability that a document is relevant 
if it has been designated as relevant.  Recall r is the 
probability that a document is designated as relevant if it 
is relevant.  Because of its objectivity, the precision-recall 
breakeven point is often used in comparing two 
information retrieval methods.  Any given fixed weight 
divides documents into two sets.  Those above the given 
weight are designated relevant and those below are 

designated as not relevant.  The weight at which the 
precision and recall are equal is called the precision-recall 
breakeven point.  Another useful measure is the Van 
Rijsbergen F-test that is given by F=2rp/(r+p).  The 
values r and p are chosen so that F is minimized. 
   In record linkage, an analogous procedure to relevance 
feedback is as follows.  An initial guess of record linkage 
parameters such as P(agree first name | M) and P(agree 
first | U) is used to obtain an initial matching output.  A 
sample of pairs is reviewed (possibly with additional 
materials or field follow-up) to determine those that are 
truly matches or not.  Based on the initial resolution of the 
sample of clerical pairs, the matching parameters P(agree 
first name | M) and P(agree first | U) are re-estimated and 
the matching is repeating.  In many situations, the 
separation between the weights in the set of matches and 
in the set of nonmatches is improved. 
2.3.  Machine Learning 
   Mitchell (1997) provides a good introduction to 
machine learning.  He broadly defines learning as: “A 
computer program is said to learn from experience E with 
respect to some class of task T and performance measure 
P, if its performance at tasks in T, as measured by P, 
improves with experience E.”   For classification of text, 
several methods are known to work well.  Support Vector 
Machines (SVM) of Cortes and Vapnik (1995), Nearest-
Neighbor, Linear Least Squares Fit ( see e.g., Yang 1999), 
and boosting (Schapire and Singer 2000) are among the 
top-ranked classification methods (Yang 1999, Yang and 
Liu 1999).  In the study of Yang and Liu (1999), Bayesian 
networks and neural networks (still good) had 
performance slightly worse than the best methods.   
   Nigam et al. (2000) observed two strengths of Bayesian 
networks.  The first is that the method is based on a 
formal probabilistic model that lends itself to statistical 
interpretation.  The second is that it provides a 
straightforward way of combining labeled and unlabelled 
data during training.  In most machine learning 
applications, labeled training data for which the true 
classification status is known is used.  Because training 
data are very expensive and unlabelled data are easy to 
collect, Nigam et al. (2000) showed how to combine 
moderate amounts of labeled data with varying amounts 
of unlabelled data to produce classification decision rules 
that improved on classification rules that were based on 
the moderate amounts of labeled data alone.  They 
showed that too small an amount of labeled training 
would not yield suitable decision rules.  Furthermore, 
they showed that, if too large an amount of unlabeled 
training data were combined with a moderate amount 
labeled training data, then decision rules could also be 
worse than those based on labeled data alone.  
   Nigam et al. (2000) and others (e.g., Yang and Liu 
1999, Lewis and Ringuette 1994) have shown that 
classification decision rules that are based on naïve 
Bayesian networks (i.e., conditional independence 



assumption) work well in practice.  The conditional 
independence is useful because it makes computation 
much more tractable (Nigam et al. 2000, Winkler 1988). 
Varying authors have observed that the words in 
documents are quite dependent and that the computed 
probabilities for documents do not even remotely 
correspond to the true underlying probabilities.  Winkler 
(1989a, 1993) observed that, if dependencies are dealt 
with, computed probabilities can somewhat correspond to 
the true probabilities in a few situations.  Dependencies 
can be computed with conventional hierarchical latent 
class methods as introduced by Winkler (1989a, 1993) 
when the number of fields is moderate (say, 20 or less).  
Because the number of fields corresponds to the number 
of words in the vocabulary used for classification (as 
much as 24,000 or more), new computationally tractable 
computational methods are needed. 
   
3. GENERAL EM PARAMETER- 
ESTIMATION THEORY 
   This section contains a general theorem that represents 
an extension of the record linkage theory of Fellegi and 
Sunter and presents a computational theory that allows 
computing probabilities for groups of words given a class 
when dependencies hold.  Some examples from record 
linkage are used to motivate the extensions and provide 
intuition.  
    The basic ideas of record linkage were introduced by 
Newcombe et al. (1959) and Newcombe and Kennedy 
(1962).  Fellegi and Sunter provided the formal 
mathematical model for record linkage and gave many 
ideas for computing the probabilities needed for the 
decision rules.  Smith and Newcombe (1975) gave an ad 
hoc method for dealing with dependency that is still very 
effectively used on the British National Health Files (Gill 
1999).  Winkler (1989a) gave some ad hoc methods for 
dealing with dependencies.  Winkler (1989, 1993) and 
Thibaudeau (1989, 1993) gave specific methods for 
dealing with dependencies.  The computational 
procedures of Winkler (1989, 1993) are a variant of the 
ECM Algorithm given by Meng and Rubin (1993). 
3.1. Examples and Ideas on Dependency  
   This example is taken from record linkage applications 
in which records contain name and address information.  
Two household files are matched as follows.  The set of 
pairs of records are those agreeing on a geographic 
identifier such as ZIP+4 (approximately 50-100 
contingent households).  Identifying information is first 
name, last name, age, house number, street name, phone 
number.   The intent is to correctly identify all true 
matches in a household.  There are multiple individuals in 
most households.  Because each geographic area is small, 
if a record pairs agrees on house number, it will typically 
agree on last name, street name, and phone number.  If the 
pair agrees on last name, then it will agree on house 
number, street name, and phone number.  The EM 

procedures of Winkler (1988, 1989) and Nigam et al. 
(2000) were originally developed to divide the set of pairs 
into two classes.  If the EM-latent class procedure is 
applied to the unlabelled set of pairs, then the set of pairs 
naturally divide into those agreeing on household 
characteristics (last name, house number, etc.) and those 
that do not.   
   Winkler (1992) introduced a 3-class EM that effectively 
divided the set of pairs into three classes: (1) within 
household agreeing on name characteristics, (2) within 
household not agreeing on name characteristics, and (3) 
outside the same household.  Winkler demonstrated that 
the probabilities from the 3-class EM yielded dramatically 
improved decision rules (for matching persons) and that 
the departures from the conditional independence 
assumption were dramatic in the classes (1) and (2).  
Using truth data, Winkler showed that conditional on 
agreement on last name, pairs in classes (1) and (2) 
agreed on house number, street name, and phone number 
with probability very close to one.  Because P(agree last | 
C1) = P(agree house number | C1) = P(agree last, house 
number | C1) < 0.25 where C1 represents class (1), the 
departure from independence is substantial.  In applying 
the decision rule for classifying pairs into matches and 
nonmatches, Winkler used the probabilities for the first 
class and the weighted combination of the probabilities 
from the first two classes.  Nigam et al. (2000) also 
compare one class with the others by using the weighted 
combination of pairs in the other classes. 
3.2.    Text Classification Models 
    In the models of Nigam et al. (2000) and of this paper, 
words are used to classify documents into different class.  
Specifically,  
 
  P(di | Θ ) = ∑ i 

|C| P(di | Cj ; Θ) P(Cj ;  Θ)               (4) 
 
where di is a specific document, Cj is a specific class, and 
the sum is over the set of classes.  Under the Naïve Bayes 
or conditional independence, we have 
 
   P(di | Cj ; Θ) = =  k  P(wdi,k | Cj ; Θ)                      (5) 
 
where the product is over the words wdi,k in document di.  
We explicitly assume that the ordering of the words in a 
document is not important.  In some situations, we use a 
Dirichlet prior 
 
   P(Θ) = >  j ( ΘCj ) ? -1    @  k  ( Θ wdi,k | Cj ) A -1         (6) 
 
where the first product is over the classes  Cj and the 
second product is over the words in the vocabulary.  
Nigam et al. (2000) set B  equal to two and refer to the 
effect of the prior as Laplace smoothing.  The prior (6) 
helps keep most of the estimated probabilities away from 
zero.  We use Du to denote unlabeled documents and Dl to 



denote labeled documents.  Given the document 
collection D, the log likelihood is given by 
 
  l(Θ | D) =  log ( P(Θ))  +  
        ∑ i C Du log ∑ j P(di | Cj ; Θ)  P(Cj ; Θ) + 
        ∑ i D Dl  log P(di | Cj ; Θ)  P(Cj ; Θ)                   (7) 
 
where the first sum is over the unlabeled documents and 
the second sum is over the labeled documents.  If we let 
zij be a missing data indicator that document i in class j is 
observed, then we have the complete data equation (CDE) 
 
  lc(Θ | D; z) =  log ( P(Θ))  +  
         ∑ i E D ∑ j zij log (P(di | Cj ; Θ)  P(Cj ; Θ))      (8)                                                                               
 
where the first sum is over all documents and the second 
sum is over the classes.  If labeled and unlabelled 
documents are mixed in proportions F  and 1-G , 0< H  < 
1,we have 
 
lc(Θ | D; z) =  log ( P(Θ))  + 
    (1-I  ) ∑ i J Du  ∑ j zij log (P(di | Cj ; Θ)  P(Cj ; Θ)) + 
  K  ∑ i L Dl ∑ j zij log (P(di | Cj ; Θ)  P(Cj ; Θ)).       (9) 
 
We use the EM algorithm to estimate (9).  The specific 
form of the EM algorithm depends on the exact 
parametric form that we assume for P(di | Cj ; Θ)  P(Cj ;  
Θ).  Here we let  
 
     P(di | Cj ; Θ)  =  M  k  N jk O k (1- P jk) 

(1- Q k )          (10)  
 
where the product is over all words in the vocabulary and R k is an indicator of whether word wdi,k is observed in the 
document di.  The starting points for the EM are the 
estimates of S jk and P(Cj ; Θ) that are available from the 
labeled data.  Under the conditional independence 
assumption, if  Θt = ( T jk

 t , P t (Cj ; Θ) : j, k) is the current 
estimate of Θ, then 
 
  U jk

 t+1  = [(V -1) + (1-W  ) ∑ i X Du E(zij | Cj ) Y k + 
         Z  ∑ i [ Dl  E(zij | Cj ) \ k] / 
      [2(] -1) + (1-̂  ) ∑ i _ Du E(zij | Cj ) 1  +  
         ̀  ∑ i a Dl  E(zij | Cj ) 1 ]                                    (11) 
 
and 
 
  P t+1 (Cj ; Θ) = [[(b -1) + (1-c  ) ∑ i d Du E(zij | Cj )  +  
      e  ∑ i f Dl  E(zij | Cj ) ]/ 
      [|C|(g -1) + (1-h  ) ∑ i i Du  1  + j  ∑ i k Dl  1]          (12) 
 
If expected values E(zij | Cj ) are substituted in the (9), 
then Equation (11) follows by taking partial derivatives 
and setting the resultant equation equal to zero.  Equation 
(12) follows by standard multinomial reasoning (e.g., 

McLachlan and Krishnan, pp. 17-19).  The parameter l  
can be varied independently for m jk and P (Cj ; Θ).  For the 
empirical example, we set n  equal to 2 in (12) and o  equal 
to 1.01 in (11).  The smoothing via different values of p  
in the prior causes the successive estimates q jk

 t+1  and P 

t+1 (Cj ; Θ) to stay away from zero.  
   An alternative form of smoothing is to add a small value r#s�t$u�t$v7wyx't'z z3{'|�|!}�~.~.t'|!r#t'���2w���{$v�|0t$�y�����2�2�2�7����� r �y{
moderate size of vocabulary or with different parametric 
representations of the underlying words in a document, 
some differing documents can have the same 
representation.  In some instances, differing documents 
may have the same representation in words.  This can 
happen with a small vocabulary and situations in which 
only the first instance of word such as corn is used in the 
parametric representation.  We use freql(i, j) to represent 
the frequency of the jth pattern in the ith class of the 
labeled documents and frequ(j) be the frequency of the jth 
pattern in the unlabelled documents.  With a slight abuse 
of notation, we let the sum over the labeled documents to 
be over all of the observed patterns in the labeled and 
unlabeled data.  The understanding is that, for a given j, 
freql(i,j) is zero for all i if a pattern is observed only in the 
unlabeled data.  Similar to Equation (9) we have,   
 
lc(Θ | D; z) =  (1-�  ) ∑ i � Du  ∑ j zij frequ(j) 
     log (P(di | Cj ; Θ)  P(Cj ; Θ)) + 
  �  ∑ i � Dl ∑ j zij �7� ���'�2� �7� � ����  �  
     log (P(di | Cj ; Θ)  P(Cj ; Θ)).                    (13)    
 ¡ ¢/£3¤�¥�¦$§#¨ ©�¢*ª�«�¬2­7®¯§ °�±�²�¦'³ ¥�± ¨ ´�¦'µ2µ2±'µ�§#©¶±'¦'·$°�·'±'³ ³�¨ ¢�±$²�±$¸7¹
class of every observed data pattern from the labeled and 
unlabeled data.  In analogy to Equations (9) and (10), we 
have estimates at step t of 
 º

jk
 t+1  = [(1-»  ) ∑ i ¼ Du frequ(j) E(zij | Cj ) ½ k +  

              ¾  ∑ i ¿ Dl À7Á Â�Ã'Ä2Å À7Æ Ç È�É�Ê É.Ë3À7Ì ij | Cj ) Í k] / 
          [(1-Î  ) ∑ i Ï Du frequ(j) E(zij | Cj ) 1  +  
              Ð  ∑ i Ñ Dl Ò7Ó Ô�Õ'Ö2Ò7× Ø Ù�Ú�Û ÚÝÜ3Ò7Þ ij | Cj ) 1 ]     (14) 
 
and  
 
  P t+1 (Cj ;  Θ) = [[(1-ß  ) ∑ i à Du E(zij | Cj )  + 
               á  ∑ i â Dl ã7ä å�æ'ç2è ã7é ê ë�ì�í ìÝî3ã7ï ij | Cj ) ]/ 
          [(1-ð  ) ∑ i ñ Du  1  +  
             ò  ∑ i ó Dl ô7õ ö�÷'ø2ù ô7ú û ü�ý�þ ý�ÿ�� ô�ÿ��2ý  
 
3.2.  Theoretical Methods for Computing Dependencies 
   This subsection presents theoretical methods for 
improving computational speed that will be applied in the 
results section.  Preliminary background is needed before 
going into the details. 
   The identifying information ���  �  is used in the 
probabilities that are used in the decision rules.  If ���  	  



represents n identifying characteristics (i.e., fields or 
words), then the probabilities can be represented under 
the independence assumption by 
 
 P(
  �  � ) = P(
 1,  � 2, … , � n ) =   
        P(� 1)  P(� 2 ) …  P(� n ),                          (16) 
 
where, for simplicity, each � i represents presence or 
absence of a characteristic.  If the independence 
assumption does not hold, then we may need to compute 
the interactions associated with, say, the first k terms.  
Then the 2k probabilities P(� 1

c,  � 2
 c, …,� k

 c ,…), where  �
i
 c , represents either the presence or absence of  one of 

the ith term, 0 �  i �  k, must be computed.    If the 
conditional independence assumption is not made, then 
each maximization step of the EM can be done by 
iterative proportional fitting (e.g., Meng and Rubin 1993, 
Winkler 1989, 1993) and can be quite slow.   
   Nigam et al. (2000) were able to get their conditional 
independence EM to converge in less than 20 minutes for 
large dimensional situations by implicitly making 
simplifying assumptions that are valid in their situation.  
To develop a computationally tractable method for EM in 
situations when conditional independence does not hold, a 
more comprehensive theoretical development is needed. 
    To obtain appropriate candidate interactions of words 
to fit in different classes, set covering algorithms can be 
used to find the most frequently occurring n-tuples of 
words in records (documents).   Let a 3-tuple of words 
occur in one class and not in other classes.  Then it has the 
capability of completely separating the records in the 
class that contain the 3-tuple from the other classes.  The 
following illustrates the situation.  Assume that there are 
two primary classes C1 and C2 and no secondary classes 
of records (documents).   Let ( w1, w2, w3 ) be a 3-tuple of 
words in a document.  Let P(w1 | C1 ) = P(w2 | C1 ) = P(w3 
| C1 ) = 0.3 and let P(w1 | C2 ) = P(w2 | C2 ) = P(w3 | C2 ) = 
0.1.  Assume that P( w1, w2, w3 | C1 ) = 0.002 and P( w1, 
w2, w3 | C2 ) = 0.000.  Under conditional independence, 
the probability ratio associated with the 3-tuple ( w1, w2, 
w3 ) is 
 
    P(w1, w2, w3  | C1 ) / P(w1, w2, w3 | C2 )  
 
can be set to an arbitrarily high value that is sufficient to 
overcome other words in the record and assure that the 
document is correctly placed in class C1. 
   The specific computational procedure can be best 
understood if the zij in Equation (13) can be replaced E(zij 
| Θt)     
 
Le(Θt+1 | D; z) =  (1-�  ) ∑ i � Du  ∑ j E(zij | Θt)  
      frequ(j) log (P(di | Cj ; Θ t)  P(Cj ; Θ t) ) + 
  �  ∑ i � Dl ∑ j E(zij | Θt � �"! #%$'&)( �"* + ,-� . �  
   log (P(di | Cj ; Θ t)  P(Cj ; Θ t) ).                     (18)    

 
We can assume that both first summations are over all of 
the observed patterns in the labeled and unlabeled by 
setting frequ(j) and freql(j)  equal to zero when j is a 
pattern that is not in the unlabeled data and labeled data, 
respectively.   If we renormalize, the coefficients in front 
of the logs so that the terms add to one (which does affect 
the maximization of the likelihood), then we have 
equations of the following form 
 
Le(Θt+1 | D; z) = ∑ij pet(i,j) log (pt(i,j))    
 
where pet(i,j) = ((1-/  ) E(zij | Θt) frequ(j) + 0  E(zij | Θt) 1"2 3%4'5)6 1"7 8 9-:<; :": = >

C,  NC is the normalization constant, and 
pt(i,j) = P(di | Cj ; Θ t)  P(Cj ; Θ t).   Let Pj be the 
interaction patterns that are to be fit in class Cj.  Each 
interaction pattern in Pj is represents a listing of the terms 
(words) that must be summed over.   For pattern i in Pj, let 
I i represent the specific subsets l of words   For instance, 
if Pi represents the presence of k specific terms in a 
document, then I i has 2k subsets.  The 2k subsets in I i 
partition the entire set of documents.   In the following , 
the notion i ∈ l means that the document i has the pattern 
of words represented by l.  The specific fitting procedure 
Ft at step t is: 
 

1. For each pattern i in Pj and each l in I i, let  M tl = 
∑i∈l pt(i,j) and EtI = ∑i∈l pet(i,j.  For each class 
k≠j, let Mk = ∑i pt(i,k) and Ek = ∑i pet(i,k). 

2. If i∈l in Pj, then pt+1(i,j) = pt(i,j) Etl / M tl;  and, if 
k≠j , pt+1(i,k) = pt(i,k) Ek / Mk.   

3. Repeat 1 and 2 for all classes Cj and all patterns i 
in Pj. 

 
Then each Ft is one cycle of iterative proportional fitting 
(e.g., Winkler 1989, 1993, Meng and Rubin 1993) and 
increases the likelihood.  The last equation in step 2 
assures that the new estimates add to a proper probability.  
If necessary, the procedure can be extended to general I-
Projections that also increase the likelihood and have 
strong constraints for keeping the probability estimates 
pt(i,j) from converging to zero or one (e.g., Winkler 
1990).  The smoothing with the constant delta in Equation 
(18) has the effect of assuring that most probability 
estimates pt(i,j) do not converge to zero.  For a fixed 
pattern i, some of the probability estimates pt(i,j), 
however, may differ by more than ten orders of 
magnitude across the different classes Cj.   If necessary, 
affine constraints may be use to restrict the differing 
relative sizes of the pt(i,j) (Winkler 1990).      
 

4. REUTERS DATA AND SET-COVERING 
TO OBTAIN A VOCABULARY 

  This section describes the Reuters data and the methods 
used for obtaining a classification vocabulary. 



4.1.  Reuters data 
      The Reuters data have been used by various authors 
(Lewis 1992, Lewis and Ringuette 1992, Yang 1999, 
1999,Yang and Liu 1999, Schapire and Singer 2000, 
Nigam et al. 2000) as a test deck for evaluating differing 
methods of text classification.  The deck has been 
extensively cleaned by David Lewis and others so that it 
can be used in comparisons.  The deck consists of 
newspaper articles in SGM format.  Each article has 
identifiers into which classes it belongs and whether it 
was used as training data or test data by Lewis.  Articles 
generally consist of a title plus text that corresponds to 
newspaper articles.   Many articles consist of title 
information only.  Most of the articles contain only a few 
lines of text.  Only a few articles are more than three 
paragraphs.  In many situations, the text information has 
been blanked or truncated.  In the initial comparisons, the 
ten classes acq, earn, corn, crude, grain, interest, money-
fx, ship, trade, and wheat that were used by Nigam et al. 
(2000) are used.  Classes earn and acq contain more than 
3000 and 1700 documents, respectively.  Classes corn, 
crude, grain, ship, trade, and wheat contain between 30 
and 100 documents.  The stoplist of Lewis (1992) is 
supplemented with additional frequently occurring words 
such as ‘within’  that occur in most or all of the 
documents.  The intuition is that, if ‘within’  occurs a 
moderate number of times in every class, it has little or no 
ability to distinguish between the classes. 
4.2.  Set Covering to Obtain a Vocabulary 
   Two criteria are used in obtaining an initial vocabulary 
of words in documents that are not in the stoplist.  The 
first is that the words are the most frequently occurring in 
a class.  The second is that the set of words associated 
with a class cover most documents in a class.  A word 
covers a document in a class if it is one of the words in 
the document.  An implicit assumption about training data 
is that they yield documents and words that are 
representative of a class.  The intent is that the most 
frequently occurring words from the test deck will also 
cover the documents in the test data.   
   If the criteria of using the most frequently occurring 
words were relaxed, it might be possible to find a 
vocabulary on the training data such that the words 
associated with a given class formed a set that is disjoint 
from the words in any other class.  In such a situation, the 
words in the vocabulary would perfectly separate the 
classes and there would be no possibility of error on the 
test data.  If two classes had substantial overlap, then it 
would only be necessary to find covering words that 
separated the documents that are only in one class.  If it 
were possible to find a cover of words that are somewhat 
frequently occurring (say in 5% of the documents in a 
class), then such a separating cover might also be used.  
The disadvantage of such a separating vocabulary of 
words is that it may not work well with the test data.   

    The specific set of words in the vocabulary is 
constructed as follows.  All words such as ‘within’  that 
occur frequently and in most or all documents are added 
to the stoplist.  They are no longer considered.  The initial 
pass at the vocabulary takes all words in a class that occur 
in 3/4 or more of the documents.  The vocabulary consists 
of the 1027 words in the naïve Bayes application and 
1094 in the general interaction Bayes application.  With 
the first vocabulary, approximately 3% of the documents 
in acq, earn, and interest and approximately 4% of the 
documents in money-fx are not covered.  Rather than use 
all 24,000 words in the documents to look for pairs or 
triples of words that occur in documents, it is much more 
efficient to use 1027 words.   How the interactions 
(dependencies) can be modeled was described in detail in 
section 3. 
 
5.  RESULTS 
   This section presents final results for naïve Bayes and 
preliminary results for interaction fitting. 
5.1.  Naïve Bayes 
   The results of this section (Table 1) compare the 
performance of the Bayesian network procedures of this 
paper with the Bayesian network procedures of Nigam et 
al. (2000).  The results presented in this paper under the 
column Winkler are for parameters under EM-fitting 
procedures where the probabilities are assumed to be  
 
Table 1.  Classification Rates  Under Independence 
Vocabulary Size 1027, Number of Patterns is 11639 
Training Data Size 9603, Test Data Size 3299 
______________________________________ 
Class            Winkler                       Nigam  
              Precision   Recall       Precision  Recall 
 
 acq         .933          .933           .839          .839 
 cor         .500          .524           .528          .528 
 cru         .806          .806           .754          .754 
 ear         .960          .958           .892          .892 
 gra         .708          .689           .723          .723 
 int          .580          .580           .523          .523 
 mon       .733          .733           .569          .569 
 shi          .837          .837           .525          .525 
 tra          .663          .652           .618          .618 
 whe        .679          .699           .678          .678 
micro 
  avg        .865         .859            .784         .784 
______________________________________ 
 
products of multinomials rather than the multinomials 
used by Nigam et al. (2000).  The microaverage is 
computed as suggested by Yang (1999).   
   Examination of Table 1 shows that the microaverage of 
the precision is 0.865 for procedures of this paper in 
contrast to the microaverage of 0.784 of Nigam et al.  The 
microaverage of the recalls in 0.865 in contrast to 0.784.  



Classes acq and ear account for more than 50% of the test 
documents. 
5.2.  Interaction Fitting – Preliminary Results 
 We present very preliminary results for fitting 
interaction models to third class cru.  The precision and 
recall under interaction are .880 and .880, respectively.  
Under naïve Bayes, precision and recall are .806 and .806, 
respectively.   
   The preliminary algorithms are: 
1.  Algorithms use all training and test data to get a 
vocabulary and sets of pairs and triples of words that a 
frequently occurring in individual classes. 
2.  The general interaction EM uses a set of interactions 
from a file that is progressively updated with additional 
interactions. 
3.  A collection of algorithms that determine new two- 
and three-way interactions to fit based on the results of a 
classification pass.   The training data is partitioned into 
three sets.  Training is done three times with 2/3 of the 
data and the remaining 1/3 used as test data.  Documents 
that are falsely classified into class cru with moderate 
weight and above may yield new interactions to fit in the 
class where the document belongs.  Documents that are 
correctly classified into class cru and have low weight 
may yield new interactions to fit in class cru. 
4.  Steps 2 and 3 are repeated until accuracy improves 
sufficiently.   
 
Specifically, the first classification pass yields precisions 
and recall of 0.4 and 0.4, respectively.  In each class, the  
interactions associated with highest frequency  pairs and 
triples of words are fit.  For each successive fitting pass, 
additional interactions are added.  The 11th pass yielded 
precision and recall above 0.8 and 0.8, respectively.  The 
12th pass yielded 0.880 and 0.880, respectively. 
 
6.  DISCUSSION 
   The methods of this paper used a moderate size of 
vocabulary of words chosen from all of the training data 
and all of the test data.  All of the data patterns observed 
in the training and in the unlabeled test data were used.  
Various authors (Weiss et al. 1999, Lewis and Ringuette 
1994 ) have the observed that classification rules based on 
a subset of the vocabulary can work moderately well. 
   Nigam et al. (2000) used a modest proportion of the 
training data for the supervised portion of the learning and 
a modest proportion of the unused training data.  Their 
purpose was to show how relatively modest amounts of 
training data could be combined with moderate amounts 
of test data.   The differences between the naïve Bayes 
results of Nigam et al. and this paper are likely due to our 
use of slightly different probability model assumptions 
and much more of the available data. 
   We expect the interaction results to improve for the 
third class and work well as we more effectively increase 
the size of the vocabulary.  They will improve further as 

we learn to use 2-way and 3-way interaction models more 
effectively.   From review of the interaction-.88-.88 
results, we can observe that some documents are not 
covered by a sufficient number of words.  We need to 
increase the size of the vocabulary to improve the 
classification of a modest number of documents.  As 
observed by earlier users of the Reuter’s collection, a 
modest percentage of documents in the training set are 
almost certainly still misclassified.  These 
misclassifications affect the results. 
   The software is slow.  Although we are only fitting 
8,000 out of a potential 120 million 2- and 3-way 
interactions, the set of generalized EM runs require 
approximately two hours.  The remaining software runs 
also require approximately one hour.  We have not yet 
developed efficient set-covering algorithms for 
determining the most parsimonious sets of interactions.   
 
7.  CONCLUDING REMARKS 
   This paper provides a general computational theory for 
estimating classification probabilities in machine 
learning, information retrieval, and record linkage.  The 
record linkage model of Fellegi and Sunter (1969) can be 
shown to generalize the classification model for Bayesian 
networks given by Nigam et al. (2000).  Theoretical and 
computational procedures are given for computing the 
probabilities used in the decision rules when the 
conditional independence assumption does not hold.   
This paper presents a somewhat different model for 
conditional-independence (Naïve) Bayesian networks.  It 
compares results with those of Nigam et al. (2000) using 
the Reuters collection of newspaper articles.  
 
This paper reports the results of research and 
analysis undertaken by Census Bureau staff.  It 
has undergone a Census Bureau review more 
limited in scope than that given to official 
Census Bureau publications.  This report is 
released to inform interested parties of 
research and to encourage discussion.  A longer 
research report is available at 
http://www.census.gov/srd/www/byyear.html.  
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