Science and Policy in Risk Analysis: A Necessary But Incompatible Mix?

Elizabeth A. Yetley, Ph.D. ODS/National Institutes of Health October 27, 2005

Policy Decision-making Process

Risk Analysis

- A defined process for bringing sound science to policy safety decisions
- Designed to protect public health
- IOM, European, and WHO reports
- Initially used for chemical hazards in food supply and environment
- Extended to microbiological hazards
- Currently being applied to other substances, e.g. nutrients
- International trade disputes

Components of a Risk Analysis

Terminology

- Risk Manager:
 Government policy maker
 Examples: FDA, EPA, FSIS/USDA
- Risk Assessor:
 - □ Scientist
 - Examples: Toxicologists, Chemists, Clinicians, Nutritionists, Statisticians

Characteristics of Risk Analysis

- Ethical considerations \rightarrow data limits
- No decision often not a viable option
- Policy decisions subject to legal challenge and competing stakeholder demands
- Therefore, risk analysis framework requires:
 - □ transparency
 - □ an accepted approach for:
 - dealing with data uncertainties, including
 - incorporating scientific judgment

Successes of Risk Analysis

□ Successes:

- E. coli 0157: apple cider; ground beef
- Listeria: cheese, fish
- Vibrio parahaemolyticus in raw oysters
- Acrylamide in potato chips
- E. sakazakii in infant formulas
- BSE ("mad cow")
- Lessons learned
 - Nutrition an immature risk analysis stage

Structured Process

Risk Manager Problem Formulation

> RM may request scientific advice to help define the problem

Risk Assessor Scientific Assessment

Hazard Identification Hazard Characterization Exposure Assessment Risk Characterization

Expert scientific answer to RM question

Risk Manager Policy Options & Selection Implementation & Monitoring

> RM may request scientific advice to help define the problem

Problem Formulation

Goal:

- Risk Manager: Requests scientific advice
 Risk Assessor: Avoids policy implications
- Interaction between risk manager and risk assessor:
 - ensure clarity and appropriateness of problem formulation
 - Maintain "bright line" between the two steps

Problem Formulation: Vitamin A

Risk Assessment Conclusion:

"Careful consideration given to appropriateness of fortification of human foods and animal feeds"

Dilemma:

□ Violated separation of science and policy

Why?

- Inappropriate problem formulation
- □ Failure of Risk Assessor to clarify

Problem Formulation: Risk Assessment Strategy for D.S.

- Dietary Supplement Safety Review
 - Risk assessment recommendation:
 - "Conclusive" proof of evidence
 - But if not available, appropriate for regulatory agency to take action in its absence
 - Discussion on the inappropriateness of the current legal framework for evaluating safety

D.S. Supplement Safety Strategy

Why?

- Risk manager problem formulation not easily addressed
- Risk assessors changed problem formulation without interacting with risk manager
- □ Peer reviewers: Strategy "not feasible"
- Solution: Add caveats to the Risk Assessment

Structured Process

Risk Manager Problem Formulation

> RM may request scientific advice to help define the problem

Risk Assessor Scientific Assessment

Hazard Identification Hazard Characterization Exposure Assessment Risk Characterization

Expert scientific answer to RM question

Risk Manager Policy Options & Selection Implementation & Monitoring

> RM may request scientific advice to help define the problem

Scientific Quality: Vitamin A

- U.S. Risk Assessment:
 - □ Risk of exceeding the UL is small
- European Risk Assessment:
 - Current intakes pose a risk
- Dilemma:
 - Differences in intakes unlikely
 - Same scientific evidence available for R.A.
- Why?
 - □ Types and breadth of expertise included
 - □ Failure to correct intake estimates for within-person variability
 - Lack strategy to model intakes from different surveys

Example: Documentation of Scientific Review

European and US Reviews:

- □ Same database available to both groups
- Relied upon different studies
- Conclusions inconsistent
- □ No information to determine basis for inconsistencies

Solution:

- Document search strategies, evaluation criteria
- Document criteria for weighing evidence

Risk Assessment: Lessons Learned

- Quality of scientific assessment dependent on inclusion of qualified experts that cover the range of types of expertise needed
- Structured process for soliciting stakeholder input might have prevented problems
- Peer review
- Scientific quality of risk assessment influences ability of Risk Manager to use results of the risk assessment

Structured Process

Risk Manager Problem Formulation

> RM may request scientific advice to help define the problem

Risk Assessor Scientific Assessment

Hazard Identification Hazard Characterization Exposure Assessment Risk Characterization

Expert scientific answer to RM question

Risk Manager Policy Options & Selection Implementation & Monitoring

> RM may request scientific advice to help define the problem

Policy Decision-making Process

Context Matters: Stevia Example Same data -- different decisions

- "Unsafe" for use as a sweetener in conventional foods
- "No objection to its use as a dietary supplement ingredient
- Science input to both decisions:
 - □ Same scientific evaluation
 - □ Same experts

Stevia Risk Assessment

- Chemistry suggests estrogenic activity
- Animal study results, although seriously flawed, are consistent with chemistry
- History of use data undocumented
- No basis to say its safe or not safe, but some basis to hypothesize a concern

What is the Starting Point?

Structured Process

Risk Manager Problem Formulation

> RM may request scientific advice to help define the problem

Risk Assessor Scientific Assessment

Hazard Identification Hazard Characterization Exposure Assessment Risk Characterization

Expert scientific answer to RM question

Risk Manager Policy Options & Selection Implementation & Monitoring

> RM may request scientific advice to help define the problem

Risk Analysis

- Structured Process
- Deals with necessary "uncertainties" in available evidence
- Inputs sound science into the policy decisionmaking process
- Protect the integrity of expert scientific determinations
- Enhance the "usability" of the scientific output

Risk Management

Decision-making process

- □ Weigh policy alternatives
- Consult with all interested parties

Consider:

- □ political, social, economic, and technical factors
- relevant risk assessment information relating to a hazard
- Develop, analyze, and compare regulatory and non-regulatory options
- Select and implement appropriate regulatory response to that hazard

Risk Assessment

- Science-based process
- Identify and describe risk
- Identify attendant uncertainties
- Take into account:
 - Inherent characteristics of the agent
 - □ Characteristics of target system
- Document, document, document...

Risk Communication

- Interactive exchange of information and opinions throughout the risk analysis process
- Concerning: risk, risk-related factors, and risk perceptions
- Among: risk assessors, risk managers, consumers, industry, the academic community and other interested parties
- Including: explanation of risk assessment findings and the basis of risk management decisions

Structured Process

Risk Manager Problem Formulation

> RM may request scientific advice to help define the problem

Risk Assessor Scientific Assessment

Hazard Identification Hazard Characterization Exposure Assessment Risk Characterization

Expert scientific answer to RM question

Risk Manager Policy Options & Selection Implementation & Monitoring

> RM may request scientific advice to help define the problem

Statisticians in Risk Assessment

- Hazard identification
 - □ Statistical criteria for evaluating studies
 - \Box Modeling across studies \rightarrow
 - Weight of the evidence
 - Causality?
- Hazard characterization
 □ Modeling → Dose/response curves

Statisticians in Risk Assessment

Exposure Assessment □ Approaches for dealing with biases □ Modeling → integrate results from different data bases

Risk characterization
 Interpretation

Statisticians \rightarrow Risk Management

- Economic analysis of policy options
- Consumer studies
- Evaluate policy proposals

Summary

- Scientific input into risk analysis is critical
 Scientific input is most impactful when:

 Scientific quality is achieved
 Documentation is sufficient
 - Output is relevant and appropriateto policy issues
 - Protection of scientific integrity is balanced against clarification of problem formulation