

Gene Finding,

SNP Associations

Mixture De-Convolution

S. Stanley Young GlaxoSmithKline.

1. Pharmacogenetics

2. Problem statement

3. Statistical methods

4. Software

5. Questions

Why Pharmacogenetics?

Social & Business Drivers

- Healthcare costs
- Adverse drug reactions
- Drug development costs
- Individualized healthcare management

Why Pharmacogenetics?

Knowledge and technology converge

Human Genome Project(s)

Sequencing technologies

Informatics

Why Pharmacogenetics?

- Failed clinical trials
- 100,000 ADR-related deaths per year in U.S. (JAMA April 14, 1998)
- Even blockbuster drugs render only 50-70% efficacy (WSJ April 16, 1999)
- Genetic insight needed on clinical outcomes
- Allows creation of customized drugs

Three Analysis Problems

1. Candidate gene analysis.

2. SNP associations.

3. SNPs and gene finding.

Pharmacogenetics today

Will genes really predict medicine response?

Drug metabolizing enzymes

• Drug targets: Enzymes, receptors, transporters

Goal: Discover genotypephenotype relationships

- Single gene effects
- Multiple gene effects
- Multiple, interacting gene effects
- Genotype-environmental interactions.

Method : Direct testing of association!

Why are we failing?

- 1. Sample size
- 2. Map not dense enough
- 3. Gene/gene interactions
- 4. Gene/environment interactions
- 5. Multiple mechanisms
- 6. Statistical methods

What are the problems?

Phenotype is typically a

Mixture of Mechanisms.

Different genes may give rise to different mechanisms.

Data sets need to be very large.

Divide data into groups following different mechanisms

What are the problems?

False Positives

Association between Attention Deficit

Hyperactivity Disorder and DAT1

dopamine transporter is not replicated.

What are the problems? Coding of gene effects

AA Aa aa : Dominant, additive, recessive and hetrosis

Individual	Dom	Add	Rec	Het	
AA	1	2	1	0	
Aa	1	1	0	1	
aa	0	0	0	0	

GlaxoSn

Candidate gene analysis

Genes and alleles are pre-selected. Looks like a logistic regression problem. Very many independent variables. Interactions are expected to abound. Analysis likely to be "exploratory."

Complex Relationships

HelixTree Software

🚋 C:/ChemTreeV4/LDL_sim1.ghd						
<u>F</u> ile	<u>E</u> dit	<u>A</u> nalysis <u>H</u> elp				
		1	2	3	4	
		LDL (mg/Dl)	AE	sex	age	
1		107.6096	0	1	31.85296	<u>ک</u>
2		232,5663	0	0	57.14532	
3		225.0902	0	0	54,98935	
4		168.2942	0	1	59.66103	
5		193.7711	0	0	67.61548	
6		187.4864	0	1	23,74845	
7		286.8607	0	0	62.58667	
8		210.8118	0	1	37.15233	
9		199.5603	0	1	42.22089	
10		156.4277	0	0	49.26252	
11		141.7603	0	1	30.15302	
12		160.2192	0	1	64.263	
13		66.42832	0	1	47.51682	
14		£7 72071	n		£9 07232	
						8

🚋 C:/ChemTreeV4/LDL_sim1.ghd						
<u>F</u> ile	<u>E</u> dit	<u>A</u> nalysis			<u>H</u>	elp
		10	11	12	13	
		gn1m3	gn1m4	gn1m5	gn1m6	
Ī		2-1	4-3	2.2	2-2	
2		1-1	4-1	2.2	2.1	
3		2-1	4-2	2-1	2.2	
4		1-1	4-3	2.1	2.2	
5		2-2	8-1	2-1	2.1	
6		2.2	9-4	2-1	2-2	
7		2-1	4-3	24	2-2	
8		2-1	9-3	2-2	2.1	
9		1-1	2-1	2-1	2.1	
10		2-1	4-1	2.2	2.1	
11		2-2	3-2	1-1	2-2	
12		2-2	4-3	24	24	
13		2-1	3-1	2.2	2-2	
14		0.5 Arasarasarasarasa	9.9	<u></u>	2.1	
4 -	- 6. 8					8

How to Read the Figures

鵍 HELIXTREE

_ 🗆 🗙

	raw P	а	dj P	Splitter	
1	8.92E-120	3.83E	-118	treatment	
2	2.95E-092	1.27E	-090	smoke	
3	2.10E-018	9.05E	-017	sex	
4	1.75E-014	7.54E	-013	age	
5	3.35E-011	1.44E	-009	gnlm5	
6	2.98E-005	1.28E	-003	gn2m4	
7	8.64E-004	3.72E	-002	gn2m6	
8	1.23E-003	5.30E	-002	gn4m9	
9	3.16E-003	1.36E	-001	gnlm6	
10	5.40E-003	2.32E	-001	gn3m8	
11	1.55E-002	6.66E	-001	gn3m3	
12	1.87E-002	8.04E	-001	gn2m10	
	(Cancel			

"Cut" Problem for Continuous Variables

How do you find "cut points"

for an independent continuous variable

such that

the dependent variable is more homogenous?

RP Advantages

1. Works for complex situations, mixtures and interactions.

2. Statistical method easy to understand.

3. High statistical power.

4. Produces <u>a</u> valid answer.

Drawbacks

- Data greedy
- Only one view of the data
- Outliers can drive the splitting process
- Highly correlated variables may be obscured
- Higher order interactions may be masked

Literature

D.M. Hawkins and G.V. Kass, "Automatic Interaction Detection", *Topics in Applied Multivariate Analysis*, ed. Hawkins, (1982).

D.M. Hawkins, S.S. Young and A. Rusinko, "Analysis of a Large Structure-Activity Data Set Using Recursive Partitioning", *QSAR*, **16**, 296-302 (1997).

Software under development. www.goldenhelix.com

Outline

- Current Efforts in Clinical Trial Simulation
- The Promise of Pharmacogenetics
- Types of Genetic Information
- Genetic Parameters
- Genetic Simulations
- Multiple Genes and Clinical Variables
- Future Work

