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Abstract

We produce reasons and evidence supporting the informal rule that the number of
runs for an effective initial computer experiment should be about 10 times the input
dimension. Our arguments quantify two key characteristics of computer codes that
affect the sample size required for a desired level of accuracy when approximating
the code via a Gaussian process (GP). The first characteristic is the total sensitivity
of a code output variable to all input variables. The second corresponds to the
way this total sensitivity is distributed across the input variables, specifically the
possible presence of a few prominent input factors and many impotent ones (effect
sparsity). Both measures relate directly to the correlation structure in the GP
approximation of the code. In this way, the article moves towards a more formal
treatment of sample size for a computer experiment. The evidence supporting these
arguments stems primarily from a simulation study and via specific codes modeling
climate and ligand activation of G-protein.

KEYWORDS: Computer experiment, Gaussian process, Random function, Latin
hypercube design, Sample size.

1 Introduction

Choosing the sample size of any experiment is an important issue in the design of ex-

periments, yet there is a lack of formal guidance. The reasons range from inadequate

prior information about the process under study to inadequate results (and inability) for

making necessary calculations. In standard regression settings, finding a sample size to
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produce satisfactory predictive accuracy depends on the design points of the data col-

lection and the error variance, but both the form of the regression model and the error

variance are typically unknown a priori. Bayesian strategies can be deployed with some

difficulty.

Deterministic computer experiments present a wholly different set of challenges, pri-

marily because concepts such as randomization and replication play no role and predictive

accuracy of the model is affected solely by bias. Because physical experimentation is ab-

sent, the constraints on experimental size are typically caused by the time it takes to

make runs of the code. Such constraints are often vague and flexible. Where budget

issues prevail (“you get this much computer time to make your runs”) the choice of sam-

ple size, n, is taken out of our hands. Nevertheless, it is useful to have some practical

guidance in choosing n and to know if the selected n is adequate to achieve stated goals.

In addition to guiding an experimenter in the choice of n for a specific experiment, we

will consider more general questions. In particular, what is the role of dimensionality of

the input space? If the curse of dimensionality applies, high-dimensional problems might

require huge, even intractable, sample sizes for good prediction accuracy. On the other

hand, if the total sensitivity of the function to all input variables is kept fixed, with this

sensitivity just spread over more input variables, dimensionality might conceivably have

a limited effect on accuracy, as in Monte Carlo integration. In this article, how total

sensitivity grows with dimension and how this sensitivity is spread across the dimensions

are key to understanding prediction accuracy, and hence sample size. Indeed, the article

is really about defining the properties of functions that arise in practice, from which

simple rules about sample size follow for that class of problems.

Little has been written on this topic. Among the few exceptions, Chapman et al.

(1994) and Jones et al. (1998) used the often quoted rule of selecting a sample size

that is 10 times the number of inputs. Although this rule has proved useful in practice

it lacks theoretical underpinning. One theoretical exploration by Chen (1996) showed

that, for a single varying input to the computer code whose output is under study, the

order of the prediction error is n−n for very smooth output functions and for an equally
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spaced design. In higher dimensions, Chen (1996) produced results on rates for product

designs. Though these rates are instructive, product designs are impractical and more

precise understanding of prediction error is needed for choosing a sample size in practical

settings. The key conclusion we arrive at is that the empirically based recommendation

of n = 10d is a good path to follow for a large class of problems.

An Example

Yi et al. (2005) studied a computer model of ligand activation of G-protein in yeast

where the computer code takes four inputs and solves a system of ordinary differential

equations (details are in Section 3). Following the path taken in the literature since

1989 (Sacks et al., 1989b; Currin et al., 1991), approximate the computer output using a

Gaussian Process (GP) constructed from a set of code runs. The question that concerns

us here is: How many runs are needed to obtain adequate prediction accuracy at untried

test points? In the G-protein example, the code is relatively quick to run and we are able

to investigate the effect of n on the prediction error by making runs for various values of

n. For each value of n the code was evaluated at inputs from an n-point maximin Latin

hypercube design (LHD) in 4 dimensions (McKay et al., 1979; Morris and Mitchell, 1995).

The plot in Figure 1 shows the square root of the integrated mean squared error (RIMSE)

for predictions using the GP model, for various choice of n. (RIMSE is computed for

both a set of 120 hold-out points and by leave-one-out cross-validation.) The minor

improvement in RIMSE for sample sizes greater than 40 = 10d is a feature of many

problems.

In general, characterization of the factors affecting approximation accuracy, and hence

sample size, requires precise formulation of the goals of the experiment. Such a formu-

lation is often elusive, however. We restrict attention to the experimental objective of

approximating the code on the basis of sample runs. Even here, the choice of measures

of accuracy is open to subjective judgment. Those we use are given in (5) and (6) be-

low. Issues such as optimization of a target criterion could bring other considerations,

especially that of fully sequential experimentation.

We have obscured the role of the design of the location of inputs in this process. Con-
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Figure 1: Root integrated mean squared error (RIMSE) of prediction against n for the

G-protein example. The solid line shows RIMSE computed for a hold-out sample; the

dashed line shows RIMSE from leave one out cross-validation.

siderable experience built up over a number of applications leads us to restrict attention

to designs that are space-filling and, for the problems we address this is well managed

by maximin LHDs (which we used in the G-protein example), but simpler to construct

zero-correlation LHDs (Gough and Welch, 1994; Owen, 1994) could also be deployed.

While there are many issues that can be addressed in determining sample size we

focus on these:

• Is n = 10d a good rule? What are the limitations of such a rule?

• How does accuracy increase with n? When are feasible sample sizes available?

• What impact do criteria have on assessing accuracy?

• What should be done when a criterion for accuracy is not met?

We will partially answer these questions, enough to provide useful practical advice for the

choice of n. Our approach to this problem investigates properties of the GP and the effect

of n on prediction by first finding connections between the design and the complexity of
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the problem and then conducting a simulation study. The simulations focus on deciding

if n = 10d is a reasonable rule and characterizing the complexity of problems that can

be dealt with using n = 10d.

The paper is organized as follows. Section 2 reviews the GP model and gives specific

formulations of the measures of accuracy we use. Section 3 explores the G-protein ex-

ample in more detail. Section 4 investigates the relationships among dimension, sample

size and complexity of the problem that guide the simulation study in Section 5 and 6.

Section 7 discusses strategies for a follow-up experiment to augment an initial design and

the implications for several examples. Finally, in Sections 8 and 9 we comment on open

and future issues and summarize our conclusions.

2 The Gaussian Process Model

A complex computer code mathematically describes the relationship between several

input variables and one or more (possibly functional) output variables. Usually, the

computer model of interest is computationally demanding, and scientific objectives like

optimization would require too many evaluations if the code is used directly. As a con-

sequence, strategies relying on computationally efficient statistical approximation (emu-

lation) of the code have been developed and have proved effective. Following the path

taken in the literature since 1989 (Sacks et al., 1989a,b; Currin et al., 1991; O’Hagan,

1992), we place a homogeneous Gaussian process prior on the possible output functions,

which leads to an approximator given by the posterior mean conditional on the data

from the computer experiment. Although the output from the computer model is often

multivariate, we will restrict our attention to scalar output. The results for scalar output

can be carried over by using principal component analysis or wavelet decompositions of

functional output as in Higdon et al. (2005) and Bayarri et al. (2007).

The computer code output is denoted by y(x), where the code’s vector-valued input,

x = (x1, . . . , xd), is assumed to be a point in a d-dimensional unit cube. As long as the

input space is rectangular, there is no loss of generality here because any rectangle can
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be transformed simply to the unit cube with only trivial implications for the analysis

method to be described.

The GP model places a prior on the class of possible y(x) functions. Let Y (x) denote

the random function whose distribution is determined by the prior. Specifically, we take

Y (x) = µ+ Z(x),

where µ is a mean parameter and Z(x) is a Gaussian stochastic process with mean zero

and constant variance σ2. In this model, the correlation structure is crucial to prediction.

At two input vectors, x and x′, we take the correlation between Y (x) and Y (x′) as

R(x,x′) = exp (−h(x,x′)) , (1)

where

h(x,x′) =
d∑

j=1

θj |xj − x′j |pj , (2)

is a measure of distance between x and x′ with weights θj ≥ 0 and distance-metric

parameters 1 ≤ pj ≤ 2.

Experience in a variety of circumstances (Higdon et al., 2004; Linkletter et al., 2006)

suggests that very smooth, even analytic, output is typical, especially in engineering

contexts. As such it is often the case that pj is fixed at 2 for all j, leading to the

Gaussian correlation function. We adopt this special case for most of the article, but

return to the issue of pj < 2 in Sections 7 and 8. With pj = 2, it is easily shown that

E

∣∣∣∣
∂Y (x)

∂xj

∣∣∣∣
2

= 2σ2θj .

Hence, the weight θj may be interpreted as a measure of the “sensitivity” of Y (x) to xj .

Characterizing the distribution of the distances in (2) across design points as a function

of the values of the sensitivity measures, θ1, . . . , θd, (Section 4) leads to an understanding

of the the factors affecting prediction accuracy and hence sample size.

Suppose we make n runs of the code at a design D of input vectors x(1), . . . ,x(n) in

[0, 1]d, leading to the data y = (y(x(1)), . . . , y(x(n)))T . The predictor Ŷ (x) of Y (x) is the
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posterior mean of Y (x) given the data and θ = (θ1, . . . , θd):

Ŷ (x) = E (Y (x)|y, θ) = µ̂+ rT (x)R−1(y − µ̂1), (3)

where r(x) = (R(x,x(1)), . . . , R(x,x(n)))T is an n× 1 vector, R is an n× n matrix with

element i, j given by R(x(i),x(j)), and µ̂ is an estimate of µ, often from the method of

maximum likelihood. The mean squared error (MSE) of Ŷ (x), taking account of the

uncertainty from estimating µ by maximum likelihood, is given by

MSE(Ŷ (x)) = E
(
Ŷ (x) − Y (x)

)2

= σ2

(
1 − rT (x)R−1r(x) +

(1 − 1T R−1r(x))2

1TR−11

)
,

(4)

where 1 is an n× 1 vector with all elements equal to 1. In practice, σ2 and θ also have

to be estimated, again often by maximum likelihood (Welch et al., 1992).

MSE in (4) can be directly computed given an experimental design and θ, and is

used in Section 4 for theoretical arguments. However, for our empirical studies we take a

different path to define prediction accuracy by using leave-one-out cross-validation(CV)

(Currin et al., 1991; Chapman et al., 1994; Gough and Welch, 1994) as follows.

Given a design D with sample size n and code runs y, denote the cross-validated

prediction of y(x(i)) by Ŷ−i(x
(i)), which is the predictor (3) from the n−1 runs excluding

run i. Then the cross-validated error of prediction is Ŷ−i(x
(i)) − y(x(i)) for i = 1, . . . , n.

Average and maximum measures of error based on cross-validation are given by

√√√√ 1

n

n∑

i=1

(
Ŷ−i(x(i)) − y(x(i))

)2

and

max
x

(1),...,x(n)

∣∣∣Ŷ−i(x
(i)) − y(x(i))

∣∣∣ .

We also normalize for the scale of the function by dividing by the range of the values of

y in the data, leading to the following inaccuracy summaries:

eavg =

√
1
n

∑n
i=1

(
Ŷ−i(x(i)) − y(x(i))

)2

range of y(x(1)), . . . , y(x(n))
(5)
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and

emax =

max
x

(1),...,x(n)

∣∣∣Ŷ−i(x
(i)) − y(x(i))

∣∣∣

range of y(x(1)), . . . , y(x(n))
. (6)

The tolerable level of inaccuracy will be application-specific, but we will typically take

eavg < 0.1 as the target for a “useful” approximation of the code.

For questions relating to the sample size of an initial design, we do not have data

available, at least not code data. But we can simulate data using the GP model with

given θ. We will distinguish e depending on whether the data are from code runs or from

simulations by eavg|code and eavg respectively.

Before code runs are made, we can perform replicate simulations of the random func-

tion and obtain a collection of eavg values, which will then provide an empirical dis-

tribution of (5). The average of the simulations will then be an estimate of expected

inaccuracy as formulated in (5). Similarly we can get an estimate of expected accuracy

as formulated in (6).

Why proceed with simulations rather than attempt direct computation of expected

values, for example? There are four reasons:

1. The ratios in (5) and (6) are appealing measures of accuracy. Producing expected

values or other quantities of these measures are hopeless without simulation; they

are readily estimated via simulation.

2. As described in Section 7, after the sample size is selected and the computer exper-

iment is run we can evaluate e·|code and, with the information from the simulations,

especially their empirical distribution, we can gauge whether the GP model and

sample size are well matched to the actual code.

3. Even if we take expectation and remove all randomness in the data, there are

other sources of randomness in practice. Most experimental designs are isomorphic

with respect to various symmetries such as interchanging the columns. Different

versions of the design within the equivalence class would lead to different measures

of prediction error, even after taking expectation with respect to the data.
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3 G-protein Computer Code

The ligand activation of G-protein in yeast is described by Yi et al. (2005). The computer

code solves a system of ordinary differential equations (ODEs) with nine parameters that

can vary. The system dynamics, the differential equations, are given by:

η̇1 = −u1η1x+ u2η2 − u3η1 + u5

η̇2 = u1η1x− u2η2 − u4η2

η̇3 = −u6η2η3 + u8(Gtot − η3 − η4)(Gtot − η3)

η̇4 = u6η2η3 − u7η4

y = (Gtot − η3)/Gtot,

where η1, . . . , η4 are concentrations of four chemical species, η̇i ≡ ∂ηi

∂t
; x is the concen-

tration of the ligand; u1, . . . , u8 is a vector of 8 kinetic parameters; Gtot is the (fixed)

total concentration of G-protein complex after 30 seconds; and y is the normalized con-

centration of a relevant part of the complex. In one study (Feeley et al., 2007), five of

these kinetic parameters are fixed (only allowing x, u1, u6, and u7 to vary). The GP

model is used to construct an approximation as a function of the transformed variables

log(x), log(u1), log(u6), log(u7) each of which is further transformed to [0, 1].

The ODE solver is quick to run and enables us to evaluate the affect of n on the

criterion in (5) using a real model. The design points at which the code is run are

selected by using maximin LHDs. These space-filling designs have proved to be highly

effective in the study and application of computer experiments.

The values of n we use are multiples (7, 10, 15, 20) of the dimension, 4, and also

include 33, the number of runs made in the Feeley et al. (2007) study. For each choice of

n, we run the ODE solver to obtain data {y(x(i));x(i) ∈ D}. The data are modeled as if

they were the realizations of a GP, and maximum likelihood estimates of µ̂, σ̂ and θ̂ are

obtained for the parameters of the GP (see Section 2) for each choice of n. For each value

of n, we use the code runs to calculate eavg|code from (5), except no normalization for the

range is made here. (In any case, the normalization factor is close to 1 at about 0.8 and
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makes little difference.) We also compare this measure with the analog from a set of new

test points. We generate an additional independent 120-point maximin LHD, D0, and

evaluate the ODE solver to obtain data for the out-of-sample test points. The same 120

test runs are used for all evaluations. Using the test sample, the analogous version of (5)

is computed by replacing the average in the numerator by 1
120

∑120
i=1

(
Ŷ (x) − y(x)

)2

.

The plot in Figure 1 shows how the two unnormalized eavg|code measures behave as n

changes. A major point is that eavg|code changes little as n increases past 40, nor is there

any substantial difference between using cross validation instead of a new test sample.

That cross validation leads to larger errors is not surprising, since leaving out one point

can produce a big gap making it hard to predict the omitted point. This is relevant

because the use of new test data is a luxury, only enjoyed if the code can be run quickly,

and so we rely on cross validation for measuring accuracy.

Judging the quality of prediction over a wide range of scenarios is simply not possible

through runs of the computer code unless the code is very quick to run. Therefore, we

will rely on simulated data generated by using a GP. Because a GP model often has

similar properties to those of the computer codes we expect to encounter in practice, we

are at least close to mimicking reality. Before simulating, however, we need to know the

important factors in function complexity, so that an efficient and insightful simulation

study may be conducted.

4 Effect of d, θ, and n on prediction accuracy

Intuitively, we know that when we predict Y (x) at some x, the design-point neighbors

of x will tend to be closer as n becomes larger, improving accuracy. If θ has many

large values, however, the correlation between Y (x) and Y for the neighbors will be

low, even for nearby points, leading to poorer prediction accuracy. Here, we develop this

intuition into some quantitative rules relating d, θ, and n to distances and the correlation

structure, shedding some light on how prediction accuracy depends on these quantities.

First, we consider how the theoretical mean squared error, MSE(Ŷ (x)) in (4), depends
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on d, θ, and n. Recall that the empirical definitions of prediction accuracy in (5) and (6)

are normalized for scale. Similarly, without loss of generality, we can ignore σ2 in a

normalized version of mean squared prediction error:

MSEnorm(Ŷ (x)) = 1 − rT (x)R−1r(x) +
(1 − 1TR−1r(x))2

1TR−11
. (7)

We see that MSEnorm(Ŷ (x)) is determined by R and r(x) only. Thus, it is a function

of n—as R and r(x) are an n × n matrix and an n × 1 vector, respectively—and the

correlations in R and r(x). Dimensionality, d, affects MSEnorm(Ŷ (x)) only indirectly via

these correlations.

For simplicity, we will explore the factors affecting MSEnorm(Ŷ (x)) for completely

random Latin hypercube designs (where the columns are permuted independently). We

consider the case where n is fixed and look at the effect of d and θ1, . . . , θd on the

correlation structure and on MSEnorm(Ŷ (x)) averaged over x. Our argument establishes

two main results:

1. For moderately large d and a random LHD, the distribution of inter-point squared

distance (weighted by θ1, . . . , θd) in (2) can be approximated by a normal distribu-

tion, with mean and variance given by simple functions of θ1, . . . , θd. The approxi-

mate distribution of (off-diagonal) correlations in R follows from the transformation

in (1).

2. Under the same conditions, the distribution of correlations in r(x) for x drawn

randomly from [0, 1]d is similar to the distribution of correlations in R.

We recognize that the matrix inverse in (7) makes MSEnorm much more complicated

than can be explained by these distributions of correlations. Nonetheless, the simula-

tions in Section 5 and 6 show that the factors affecting the correlation distribution explain

much of the effect of d and θ1, . . . , θd on our empirical accuracy measures. Indeed, un-

derstanding these factors leads to simulation studies with straightforward interpretation.

Take two points, x and x′, at random from a random LHD. An LHD is defined here
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to have fixed grid points {0, 1/(n− 1), . . . , 1} for each variable xj . Let

hj = |xj − x′j |

be the unweighted distance in dimension j appearing in h in (2). The first two moments

of h2
j are given by Lemma 1.

Lemma 1: Let hj be the distance between two randomly chosen points xj and x′j in

dimension j for a random LHD. Then

P (hj = i/(n− 1)) =
n− i(

n
2

) for i = 1, . . . , n− 1,

E(h2
j ) ≡ m1(n) =

1

6

n(n + 1)

(n− 1)2
,

and

Var(h2
j ) ≡ m2(n) =

1

180

n(n− 2)(n+ 1)(7n+ 9)

(n− 1)4
.

The proof of Lemma 1 can be found in Appendix A. Note that the two moments converge

to 1/6 and 7/180 as n→ ∞.

If d = 1 than the probability distribution P (hj = i/(n − 1)) in Lemma 1 exactly

describes the distribution of all possible distances between distinct points x and x′. That

is, since the design points are on the grid, every possible distance i/(n− 1) occurs n− i

times.

If d > 1, however, not all of the possible distances over all dimensions will be ob-

served in any one design, and we rely on the moments given in Lemma 1 to describe

behavior. Specifically, for two randomly chosen points, the squared distance in (2) across

all dimensions which arises if pj = 2 has expectation

E(h) = m1(n)

d∑

j=1

θj . (8)

For a completely random LHD, which has independently permuted columns,

Var(h) = m2(n)

d∑

j=1

θ2
j . (9)
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Furthermore, as d increases, the central limit theorem applies unless there are a few

θj weights that dominate, so that h is approximately normal with mean and variance

given by (8) and (9). Hence, the correlation in (1) is approximately log-normal with

these moments (after a change of sign). Figure 2 compares the empirical distributions

for a single random LHD with the approximations, for d = 10, n = 100, and θ =

(2.71, 2.17, 1.69, 1.27, 0.91, 0.61, 0.37, 0.19, 0.07, 0.01) the approximations are seen to be

good. The values chosen for θj comprise a canonical configuration, to be explained in

Section 5.
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Figure 2: Distribution of squared distance (left panel) and correlation (right panel) for

a randomly chosen pair of points from a random Latin hypercube design with d = 10,

n = 100, and θ = (2.71, 2.17, 1.69, 1.27, 0.91, 0.61, 0.37, 0.19, 0.07, 0.01)

Similarly, Figure 3 shows the analogous distributions for the vector r(x). The em-

pirical distribution of the distance and the correlation are taken over a single random

LHD, D, and the distance between x and all n points in D is computed for 50 randomly

chosen test point x ∈ [0, 1]d. The same normal or log-normal approximations established

above for inter-point distance or correlation are transferred to test-point to design-point

distance or correlation. It is seen that the correlations in r(x) behave like those in R.

Note that there is a negative impact on prediction accuracy when the mean distance
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Figure 3: Distribution of squared distance (left panel) and correlation (right panel) for a

randomly chosen test point and a random Latin hypercube design with d = 10, n = 100,

and θ = (2.71, 2.17, 1.69, 1.27, 0.91, 0.61, 0.37, 0.19, 0.07, 0.01)

in (8) increases or when the variance in (9) decreases. When the variance decreases, small

squared distances (high correlations) are less likely, whereas high-correlation neighboring

points lead to good prediction accuracy. Indeed, if we want to predict Y (x), just one

close design neighbor, x(i), of x, close in the sense of correlation, may by itself give good

prediction accuracy. Let ρ = exp(−h(x,x(i))) be the correlation for these two points.

Predicting using only Y (x(i)) provides an upper bound on MSEnorm obtained from (7).

As R is the scalar 1, and we have

MSEnorm(Ŷ (x)) < 1 − ρ2 + (1 − ρ)2 = 2(1 − ρ). (10)

If ρ is larger than about 0.95, or equivalently h is less than about 0.05, MSEnorm(Ŷ (x)) <

0.1, the target we have set.

The magnitudes of the correlations in R and r(x), which lead to MSEnorm in (7),

depend on τ =
∑d

j=1 θj and ψ =
∑d

j=1 θ
2
j to a good approximation. There are two

practical consequences. First, these two quantities are used to plan the simulations in

Section 5 and 6. We find that the behavior of the empirical analog, eavg, of MSEnorm

is largely dependent on τ and ψ. Secondly, the distributions of the correlations in r(x)
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(for random test points) and in R (between design points) are similar. The implication

is that accuracy estimates will be similar from cross validation based on leaving out one

design point at a time versus random test points.

There are many possible θ1, . . . , θd configurations, and we examine three special cases,

ordered from worst to best behavior in terms of the effect of dimensionality.

1. Suppose θ1 = · · · = θd = θ, i.e., as dimensionality increases, further equally active

variables are added. Then, τ = dθ and ψ = dθ2. Thus, the mean of the distribution

of h increases linearly with d, the standard deviation of the distribution increases as
√
d, and the h distribution becomes stochastically larger with d. For large enough

d, prediction accuracy will be poor, even if θ is small.

2. Suppose τ is kept constant, i.e., a fixed amount of total sensitivity is spread across

all dimensions. Clearly, ψ takes its minimum value of ψ = τ 2/d when θ1 = · · · =

θd = τ/d. Thus, equally active factors are worst for prediction accuracy. Moreover,

as ψ = τ 2/d decreases with d, this effect becomes worse as d increases. For large

enough d, the h distribution will become concentrated at its mean, m1(n)τ , and

the limiting accuracy depends on τ . In this sense, if the total amount of sensitivity

is kept constant, the worst-case effect of dimensionality is small.

3. Alternatively, suppose we keep τ and ψ constant as d increases. Write

ψ =
d∑

j=1

θ2
j =

d∑

j=1

(θj − θ̄)2 +
1

d
τ 2. (11)

Because the second term on the right decreases with d,
∑d

j=1(θj − θ̄)2 must increase

to keep ψ constant. Another way of looking at the fact that θ1, . . . , θd must become

more variable with d to maintain prediction accuracy is that some dimensions are

more active than others, or there is effect sparsity.

The argument that accuracy decreases as τ =
∑d

j=1 θj increases or as ψ =
∑d

j=1 θ
2
j

decreases is borne out by the simulations in Section 5 and 6.
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The quantitative effect of n on accuracy is less obvious, however. The mean and

variance of the squared distance distribution in (8) and (9) do not depend on n in

the limit. Thus, R and r(x) in (7) have elements that depend only weakly on n in this

statistical sense. Rather, MSEnorm depends on n because R and r(x) have more elements.

The closest neighbor in the bound (10) will tend to become closer with larger n, thus

driving the bound down. A full analysis of the impact of using all n design points is

complicated by the inverse of R in (7). All that we can say is that harder problems

(larger τ and smaller ψ) will require larger sample sizes, regardless of dimensionality

to a large extent. This insight greatly facilitates quantification of the impact of n by

simulation in Section 5 and 6.

If p1 = · · · = pd, but the common value is less than 2, m1(n) and m2(n) in Lemma 1

will change. The mean and variance of h in (8) and in (9) will still depend on τ and ψ,

however.

5 Simulation Results for Average Error

The arguments in Section 4 suggest that the effect of the correlation parameters on eavg

is through τ and ψ, thereby diminishing the role of d. To investigate this further we will

engage a simulation study that changes dimension but keeps τ, ψ fixed.

But before doing so we must decide on the configurations of the θ vectors to be

explored. Past experience has indicated that for well-behaved outputs there may be

a few large components of θ, a few moderately sized, and the remainder small. For

example, for the G-protein model and the 33-run experiment, θ̂ = (1.71, 0.29, 0.27, 0.25)

has one moderate value and the other three are small. From this point of view, we will

adopt a two-parameter class of canonical configurations of θ, defined by

θj = τ

[(
1 − j − 1

d

)b

−
(

1 − j

d

)b
]

for j = 1, . . . , d, and b ≥ 1, τ > 0. (12)

Here θj decreases in j and
∑d

j=1 θj = τ . The generated θ vector tends to have the

characteristics we expect, especially as d gets large. Examples of θ configurations for
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d = 10 and τ = 1 are given in Table 1. When τ 6= 1, the value of θ is found by

multiplying each θj in the table by τ .

b ψ θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

3 0.18 0.271 0.217 0.169 0.127 0.091 0.061 0.037 0.019 0.007 0.001

9 0.45 0.613 0.253 0.094 0.030 0.008 0.002 0 0 0 0

Table 1: Configurations of θ for d = 10

Data for the simulation study are generated as follows. Given d and n, select a

maximin LHD D of n points in [0, 1]d. Fix values of µ = 0, σ2 = 1, p = 2 and select

a canonical θ (as specified above) for the parameters of the GP given in (2). Gener-

ate 50 independent realizations of the GP resulting in 50 different sets of observations

{y(x(i));x(i) ∈ D}. Since, the measure of accuracy in (5) or (6) is standardized by the

range, the particular value of σ2 = 1 is largely irrelevant.

For each data set form a predictor using (3) with the value of θ the same as that used

to generate the simulated data. Alternatively, for each data set, we could estimate θ

and construct a predictor with θ̂. We found that there is no essential difference between

predictors based on θ and θ̂ in terms of our summary measures of prediction accuracy,

and using the fixed θ takes much less time in our extensive study. The predictor leads

to a value of eavg in (5) for each data set.

We start with d = 5 and b = 1 in (12), which results in θj = τ/5, j = 1, . . . , 5. As

argued in Section 4, this choice of θ minimizes ψ for a fixed τ and represent a “worst

case” starting point. For a given τ value, ψ = τ 2/5 when d = 5. If τ and ψ are kept

constant as d changes, then the canonical θ vector must satisfy
∑
θ2

j = τ 2/5. For d = 10,

15, and 20, this means that b = 3.445, 5.507, and 7.55, respectively, in (12). Values of

τ = 3, 10, 20, and 40 are chosen to cover problems from “easy” to “very hard”.

The arguments in Section 4 suggest that similar accuracy should be obtained in any

dimension for fixed values of n, τ and ψ, but intuitively we expect that n must increase
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with d. Our results for the first two moments may not fully explain the behavior of

the tails of the distribution of h, and small distances in particular play a prominent role.

Thus, we allow n to increase modestly with d, specifically linearly. We also allow different

rates, i.e., n = kd, where k = 7, 10, 15, or 20.

The four panels in Figure 4 correspond to τ = 3, 10, 20, and 40, respectively. In each

panel, four curves are plotted, for d = 5, 10, 15, and 20, respectively. A curve shows

the mean of eavg computed from the 50 realizations of the GP, which we denote by ēavg,

plotted against k (recall n = kd). Several features of these plots are worth singling out:

• All curves lie below 0.20 suggesting that even in very hard problems (τ = 40) the

average error does not get extremely large.

• The case of τ = 3 represents an “easy” problem owing to the small components of

θ.

• When ψ is fixed, the curves for d = 5, 10, 15, and 20 are all quite close.

• The choice of n = 10d leads to predictions that on average are accurate to within

10% of the range of the data providing that τ ≤ 10; reliable fits are barely obtainable

or not obtainable for τ ≥ 20.

• The improvement in fit for sample sizes greater than n = 10d is marginal.

Suppose ēavg decreases with n approximately at the convergence rate n−c. The rate

c can be estimated from the points shown in Figure 4 from the slope of the least squares

fit of log(ēavg) regressed on log(k). The estimated rates are in Table 2.

There are a few interesting things to notice in Table 2. For easy problems (τ = 3)

convergence rates close to 1 are achievable for dimensions as large as d = 20 so that

doubling sample size can reduce eavg by half. On the other hand, in hard problems

the rates of convergence can be very small. For example, when d = 15 and τ = 20,

it takes about 8 times as many runs to reduce eavg by half. When τ = 40 it appears

hopeless to reduce eavg substantially without enormous sample sizes. In such situations,

the computer experiment may have to be reformulated and restricted.
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Figure 4: The four panels correspond to four values of τ , and ψ = τ 2/5. In each panel,

ēavg is plotted against k for d = 5 (solid line), d = 10 (dashed line), d = 15 (dotted line)

and d = 20 (dot-dashed line).

τ

d 3 10 20 40

5 1.34 0.63 0.43 0.08

10 0.97 0.57 0.31 0.14

15 0.96 0.53 0.36 0.13

20 0.87 0.51 0.28 0.19

Table 2: Estimated convergence rates for ēavg

The arguments in Section 4 suggest that for fixed total sensitivity τ , dividing τ equally

across the d input variables is the worst case for prediction accuracy, i.e., ψ = τ 2/d.

Figure 5 explores worst-case problems by plotting eavg against τ . There is a separate
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plot for d = 5, 10, 15, 20, and n = 10d throughout. Fifty simulated realizations are made

for each value of τ . The lines in Figure 5 drawn through the averages of eavg show
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Figure 5: The four panels correspond to d = 5, 10, 15, and 20, respectively. In each

panel, eavg (squares) from 50 realizations and ēavg (solid line) are plotted against τ . The

horizontal line indicates accuracy to within 10% of the range of the data.

little difference as d increases, as predicted in Section 4 for the worst case studied here.

There is a small dimensionality effect (and n = 10d is increasing with d), but the total

sensitivity, τ , is the important factor. For τ ≥ 20, eavg is above the target of 0.1 for

all d studied, though it tends to remain below about 0.2 to 0.25. This latter fact is a

somewhat surprising feature and, in fact, holds for τ as large as 100 (not shown).

To investigate the more realistic situation where the problem has some degree of

sparsity we allow ψ to vary. We fix d = 10 and n = 100. As suggested by Figure 4, for

fixed values of τ and ψ, results for other values of d (with n = 10d) are similar. For each

fixed value of τ we increase the value of ψ so that the sparsity is increased, and the total

sensitivity of the function is shifted to fewer and fewer dimensions.

20



2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

ψ

e
τ=3

20 40 60
0

0.05

0.1

0.15

0.2

0.25

0.3

ψ

e

τ=10

50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

0.25

0.3

ψ

e

τ=20

200 400 600 800 1000 1200
0

0.05

0.1

0.15

0.2

0.25

0.3

ψ

e

τ=40

Figure 6: The four panels correspond to four values of τ . In each panel, eavg (squares)

from 50 realizations and ēavg (solid line) are plotted against ψ. The horizontal line

indicates accuracy to within 10% of the range of the data.

Even a moderate degree of sparsity can result in drastic reduction of error. The

τ = 40 panel in Figure 6 is interesting, since even in such a complex problem reasonable

accuracy can be obtained when there is a degree of sparsity. In particular the last few

values of ψ represent situations where the 10-dimensional problem contains five or fewer

active dimensions.

6 Simulation Results for Maximum Error

In Section 5 results were presented corresponding to ēavg; in this section we discuss the

similarities and differences that arise in using ēmax, i.e. the average of emax in (6) across

simulations. The four panels in Figure 7 correspond to τ = 3, 10, 20, and 40, respectively.

In each panel, curves for ēmax (averaged across 50 simulations) are plotted for d = 5, 10,
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15, and 20. Clearly, one would not expect to see the same level of accuracy as obtained

using ēavg so we set a threshold of 0.2 as opposed to the threshold of 0.1 used for eavg.

Comparing this to the plots in Figure 4 there a few things to notice:
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Figure 7: The four panels correspond to four values of τ and ψ = τ 2/5. In each panel

ēmax is plotted against k for d = 5 (solid line), d = 10 (dashed line), d = 15 (dotted line)

and d = 20 (dot-dashed line).

• The case of τ = 3 again represents an “easy” problem owing to the small compo-

nents of θ.

• When τ is fixed, the curves for d = 5, 10, 15, and 20 are all quite close.

• The choice of n = 10d leads to predictions that on average are accurate to within

20% to 30% of the range of the data providing that τ ≤ 10; reliable fits are barely

obtainable or not obtainable for τ ≥ 20. When τ = 10 thresholds for emax are

somewhat harder to reach compared to those using eavg.
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• The improvement in fit for sample sizes greater than n = 10d is marginal.

The analysis leading to Table 2 can be duplicated for ēmax; the result is Table 3. The

convergence rates, as expected, are lower than for ēavg and are essentially 0 when τ = 40.

Table 3 can be used in the same way as Table 2 is used in Section 7 to derive sample

sizes needed to reduce ēmax.

τ

d 3 10 20 40

5 1.11 0.41 0.26 0.00

10 0.74 0.37 0.14 0.03

15 0.72 0.37 0.22 0.00

20 0.64 0.28 0.11 0.04

Table 3: Estimated convergence rates for ēmax

Figure 8 explores worst-case problems (equal θj) by plotting emax against τ . There is

a separate plot for d = 5, 10, 15, 20, and n = 10d throughout. Fifty simulated realizations

are made for each value of τ . The lines in Figure 8 drawn through the averages of emax

show little difference as d increases. Comparing this to the analogous plot in Figure 5

we see the same general trend using emax as opposed to eavg. There is again a small

dimensionality effect, but the total sensitivity, τ , is the important factor. For τ ≥ 20,

emax is above the target of 0.2 for all d.

The Figure 9 shows the effect of sparsity when using emax and corresponds to the plot

in Figure 6 for eavg. Even a moderate degree of sparsity can result in drastic reduction of

error. The τ = 40 panel in Figure 9 is interesting, since even in such a complex problem

reasonable accuracy can be obtained when there is a degree of sparsity. In particular the

last few values of ψ represent situations where the 10-dimensional problem contains five

or fewer active dimensions. This is similar to what was found in Figure 6.
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Figure 8: The four panels correspond to d = 5, 10, 15, and 20, respectively. In each

panel, emax (squares) from 50 realizations and ēmax (solid line) are plotted against τ . The

horizontal line indicates accuracy to within 20% of the range of the data.

7 Follow-up Experiments

Suppose an initial experiment of given sample size has been conducted. We now have

real data from running the code to fit a GP model following the methodology described

in Section 2. Estimates of the correlation parameters, θ and p, are available, as well as

values of eavg|code and emax|code computed from (5) and (6).

What should be done to augment the initial design, if anything? Set eA as a threshold

value for acceptable eavg (for example, eA = 0.1). If eavg|code < eA then nothing more

needs to be done to increase accuracy. If eavg|code > eA then we propose the following

follow-up strategy:

1. Do a simulation study using the estimated correlation parameters, θ̂ and p̂, and

the initial sample size. Compute eavg (and emax) for each realized data set.
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Figure 9: The four panels correspond to four values of τ . In each panel, emax (squares)

from 50 realizations and ēmax (solid line) are plotted against ψ. The horizontal line

indicates accuracy to within 20% of the range of the data.

2. If the distribution of the eavg values from the simulations suggests a non-trivial

probability of exceeding eA, it is plausible that the initial sample size is inadequate

and we could go to Step 4. Otherwise, continue with Step 3.

3. If the distribution of the eavg values from the simulations is inconsistent with

eavg|code, the appropriateness of the GP model is in question; see Section 8. Of

course, it would be foolish to worry about small inconsistencies, and some subjec-

tivity is inevitable in assessing what is substantial.

4. To decide on a follow-up sample size, explore plausible choices of n through a

simulation study using the estimated correlation parameters, θ̂ and p̂.

In order to illustrate the points above, we revisit the G-protein example in Section 3.

The initial sample size of n = 33 led to eavg|code = 0.0221 (see Figure 1). For most

25



examples this would be considered small, and there would be nothing further to do.

On the other hand, if we wanted to reduce the error rate by a half, a simulation could

be performed using the outline above. Since p̂ = 2, we could also consult Table 2 to

calculate the desired sample size. From the analysis of the n = 33 runs, τ̂ = 2.52 and

ψ̂ = 3.15. For d = 5 and τ = 3, Table 2 gives a rate of convergence of 1.34, which is very

likely to be conservative. Thus, a sample size of at least n = 33(21/1.34) = 55 is required.

From Figure 1, eavg|code at n = 60 is 0.0137, which is just slightly larger than half of the

observed value when n = 33.

Gough and Welch (1994) considered a model for ocean circulation with d = 7 inputs

and seven different outputs, y1, . . . , y7. From an initial experiment yielding 36 good runs,

a GP was fit separately for each output. In each case p = 2 for each output y1, . . . , y7.

Estimated values of θ are provided in Table 4. The τ̂ and ψ̂ rows in Table 4 summarize

y1 y2 y3 y4 y5 y6 y7

θ̂1 0.319 0.544 7.899 0.301 0.100 1.249 2.512

θ̂2 0 0.026 0.001 0.552 0.827 0.001 0.003

θ̂3 0.686 0.012 0.012 0 0.115 0.066 0.037

θ̂4 0.267 1.202 0.021 0 0.156 0.478 0

θ̂5 0.029 0.197 0.003 0.060 0.044 0.119 1.463

θ̂6 0 0.008 0.006 1.136 0.685 0.433 0.665

θ̂7 0.229 0.031 0.129 0.069 0.009 0.082 1.001

τ̂ 1.53 2.02 8.07 2.12 1.94 2.43 5.68

ψ̂ 0.69 1.78 62.42 1.69 1.21 2.01 9.89

Table 4: Estimates of θ for the ocean-circulation model.

the GP fits from the 36 runs.

If eA = 0.1, the values for eavg|code in Table 5 show that a reasonable approximation

has been obtained. Moreover, for all output variables, eavg|code is within ēavg ± 2ŝd(eavg),

i.e., eavg|code lies within the support of the empirical distribution of simulated eavg. The
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n y1 y2 y3 y4 y5 y6 y7

36 eavg|code 0.034 0.041 0.017 0.037 0.034 0.039 0.078

ēavg 0.028 0.033 0.022 0.030 0.042 0.051 0.072

ŝd(eavg) 0.008 0.011 0.008 0.009 0.011 0.026 0.021

70 ēavg 0.008 0.011 0.007 0.009 0.018 0.021 0.032

ŝd(eavg) 0.004 0.003 0.003 0.007 0.006 0.006 0.009

Table 5: Actual and simulated accuracy measures for the ocean-circulation model

accuracy for y7 is lower than for the other output variables, however, and we consider

reducing eavg|code from 0.078 to, say, 0.05. In this case p̂ = 2, and again we can use Table

2 for guidance in choosing an appropriate sample size.

Interpolating the convergence rates in the table suggest that ēavg should be decreasing

at rate roughly 1/n, and reducing the sample size to 0.05 would require a sample size

of approximately 56 runs. Alternatively, cutting ēavg by half would require doubling the

run size. As no further code runs are available we investigate this strategy by simulating

what would have happened if n = 70 runs had been performed: for y7, ēavg is reduced by

just over a factor of 2, as predicted.

Chapman et al. (1994) analyzed a computer code describing the seasonal growth and

decline of Arctic sea ice. The code had d = 13 input variables and four outputs, y1, . . . , y4.

From an initial design of n1 = 69 runs, GPs were fit separately for each output. Every

fitted GP had at least one input variables with p̂j < 2. Estimated values of θj and

αj = 2 − pj for n1 = 69 runs are provided in Table 6.

Estimated vales of θj and αj = 2 − pj for n = 157 runs are provided in Table 7.

The values of eavg|code are in Table 8; each is below 0.1, and if eA = 0.1 we would be

tempted to stop.

The eavg|code values for y3 and y4 are below 0.1 and within 2ŝd(eavg) of ēavg but the

emax|code values of about 0.5 are of concern. The simulated emax distributions are incon-

sistent with the observed emax|code values, as evidenced by ēmax and ŝd(emax) in Table 8,
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y1 y2 y3 y4

j θ̂j α̂j θ̂j α̂j θ̂j α̂j θ̂j α̂j

1 0.010 0.000 0.023 0.000 0.021 0.000 0.045 0.000

2 0.069 0.000 0.011 0.000 0.000 0.344 0.000 1.000

3 0.455 0.000 0.000 0.000 0.533 0.000 0.445 0.000

4 0.020 0.000 0.021 0.000 0.215 0.000 0.266 0.000

5 0.001 0.000 0.126 0.000 0.000 1.000 0.386 0.000

6 0.024 0.000 0.105 0.000 0.000 0.000 0.053 0.038

7 0.168 0.000 0.030 0.000 1.883 0.000 0.872 0.000

8 0.301 0.000 2.171 0.000 0.252 0.094 0.181 0.316

9 0.058 0.000 0.359 0.000 0.001 0.000 0.028 0.000

10 0.064 0.000 0.000 0.000 0.094 0.864 0.554 0.000

11 0.015 1.000 0.386 0.000 0.990 0.513 1.182 0.188

12 0.000 0.907 0.003 0.000 0.000 0.344 0.011 0.000

13 0.000 1.000 0.416 0.135 0.000 0.000 0.000 0.000

Table 6: Estimates of θj and αj = 2 − pj for the sea-ice code using n1 = 69 runs.

although for y3 the range of the simulated emax values covers emax|code. The sea-ice code

failed to converge for 12 of 81 attempted runs (hence the 69 good runs), a suggestion of

erratic behavior of the code and a possible explanation of the difference between actual

and simulated error in some regions of the input space.

Faced by similar concerns about the approximation accuracy from the initial experi-

ment, Chapman et al. (1994) opted to make additional runs and ended up with a total

of 157 good code runs. As these are the only follow-up runs available, we restrict our

analysis to seeing whether we can predict by simulation the impact of such a follow-up

experiment.

The accuracy measures for the n = 157 runs conducted and from simulation are
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y1 y2 y3 y4

j θ̂j α̂j θ̂j α̂j θ̂j α̂j θ̂j α̂j

1 0.032 0.313 0.030 0.132 0.048 0.579 0.314 0.000

2 0.015 0.115 0.022 0.013 0.003 1.000 0.067 0.000

3 0.421 0.000 0.014 0.158 0.324 0.546 0.316 0.503

4 0.007 0.000 0.027 0.375 0.001 0.000 0.000 0.000

5 0.008 0.100 0.033 0.594 0.000 0.820 0.220 0.000

6 0.043 0.000 0.182 0.000 0.017 0.351 0.289 0.000

7 0.216 0.000 0.013 0.000 2.272 0.010 1.711 0.015

8 0.563 0.000 1.273 0.141 0.214 0.322 0.476 0.085

9 0.093 0.000 0.347 0.000 0.000 0.000 0.060 0.000

10 0.182 0.322 0.006 0.536 0.403 0.652 0.331 0.255

11 0.184 0.059 0.023 0.000 0.908 0.307 0.357 0.525

12 0.000 0.907 0.000 0.907 0.000 0.907 0.000 0.344

13 0.003 1.000 0.002 0.817 0.000 0.903 0.000 0.344

Table 7: Estimates of θj and αj = 2 − pj for the sea-ice code using n = 157 runs.

compared in Table 8. Relative to n = 69, simulation suggests only modest reduction in

eavg. For y4, even this modest reduction is not realized by eavg|code. With n = 157 runs, the

simulated values of emax are again inconsistent with emax|code for the troublesome y3 and

y4. Although the magnitude of the maximum error is underestimated, the simulations

correctly predict that there will be little impact on emax|code from the further runs. Thus,

the simulation study leads to the same conclusion that Chapman et al. (1994) reached

after the follow-up experiment: Taking more runs is not effective. Alternative ways of

proceeding are discussed in Section 8.
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n y1 y2 y3 y4

Average error

69 eavg|code 0.043 0.044 0.093 0.099

ēavg 0.048 0.044 0.079 0.089

ŝd(eavg) 0.011 0.013 0.019 0.018

157 eavg|code 0.032 0.031 0.079 0.096

ēavg 0.029 0.029 0.056 0.062

ŝd(eavg) 0.008 0.009 0.011 0.011

Maximum Error

69 emax|code 0.249 0.124 0.466 0.559

ēmax 0.139 0.128 0.225 0.263

ŝd(emax) 0.039 0.052 0.071 0.079

157 emax|code 0.189 0.116 0.446 0.494

ēmax 0.103 0.096 0.182 0.203

ŝd(emax) 0.035 0.033 0.045 0.055

Table 8: Actual and simulated accuracy measures for the sea-ice code

8 Comments and Open Issues

There are several open issues, concerned mainly with follow-up once an initial set of code

runs has been collected and analyzed.

Effective dimensionality

The ocean-circulation model (Gough and Welch, 1994) had an initial sample size of

n = 36, about half the recommended value of n = 10d. Even so, a good fit was obtained.

A closer look at this application shows that θ̂ has elements that are near zero for three

of the input variables. Thus, the input space is effectively reduced to d = 4 dimensions,

leading to a recommendation of n = 40. If there are good a priori reasons to expect that
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the number of active dimensions, d0, is less than d then choosing n = 10d0 could be a

useful complement to the recommended strategy, especially if there are serious budget

constraints.

The GP model is a poor fit

Good general strategies to cope with lack of fit of the GP model are not readily

available. There is interesting work by Gramacy and Lee (2007) which could be useful

when runs are plentiful. The approach used extensively by Aslett et al. (1998) and by

Gramacy and Lee (2007), of narrowing the space of inputs, better enables approximation

of code output by a homogeneous GP; the assumption of homogeneity is less sustainable

when the input space is too large. But how to do this in a measured way is not clear and

needs further research.

Canonical configurations of θ

For p = 2, we chose a simple two-parameter family in our analyses in Section 5 and 6.

Other sets of values for θ can be explored, but we find little incentive to do so for the

purpose of settling on initial sample size. We have found that even if θ is not a canonical

configuration there is little to no difference in distributions of eavg or emax relative to a

canonical θ provided τ and ψ are the same.

Treating a GP with p 6= 2 (as in the sea-ice example)

We have not discussed the relevance, nor the use, of τ and ψ when p 6= 2. The

interpretation of τ and ψ values need to be reexamined.

In the case of the exponential correlation function (all pj = 1), the implied prior

distribution is on a much larger class of functions and achieving good accuracy is more

difficult. It is easy to work out the mean and variance of h1
j as in Lemma 1, and again

we find that τ and ψ should be important. The exact values are given in Lemma 2.

Lemma 2: Let hj be the distance between two randomly chosen points for variable xj

in a random LHD. Then

E(hj) =
1

3

(n+ 1)

(n− 1)
,
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and

Var(hj) =
1

18

(n− 2)(n+ 1)

(n− 1)2
.

The proof of Lemma 2 can be found in Appendix A. Note that the two moments converge

to 1/3 and 1/18 as n → ∞, i.e., they do not depend on n in the limit. The mean of

h1
j , is now approximately twice that for the case pj = 2, indicating that larger samples

could be needed to achieve desired accuracy. How this all plays out in analogues of the

analyses in Section 5 and 6, to enable follow-up recommendations has yet to be explored.

When 1 < pj < 2, exact calculations of the mean and variance of h
pj

j are not avail-

able. Approximations are obtainable as follows, however. Assume that xj and x′j are

approximately independent and uniform on [0, 1], and again let hj = |xj − x′j |. We find

that h
pj

j has

E(h
pj

j ) =
2

(pj + 1)(pj + 2)

and

E(h
2pj

j ) =
1

(pj + 1)(2pj + 1)
.

For pj = 2 this produces E(h2
j) = 1/6 and Var(h2

j) = 7/180, which are the asymptotic

values found in Lemma 1.

For the general case, with pj varying with xj , assume the design is a completely

random LHD. Asymptotically, h(x,x′) =
∑d

j=1 θj |xj − x′j|pj in (2) has mean depending

on both θ and p:

E(h) =
d∑

j=1

θj
2

(pj + 1)(pj + 2)
.

Similarly, it has asymptotic variance

Var(h) =

d∑

j=1

θ2
j

(
1

(pj + 1)(2pj + 1)
− 4

(pj + 1)2(pj + 2)2

)
.

Defining canonical sets of correlation parameters is now much more complicated. Some

preliminary calculations for the sea-ice application suggest that the convergence rates for

p 6= 2 are different from those obtained when p = 2 and thus one must examine rates

for various combinations of both θ and p. This too calls for additional examination.
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9 Discussion

In the introduction we raised a set of issues that should be treated. In the subsequent

sections we have provided evidence that:

• “n = 10d” is a viable and valuable rule-of-thumb for choosing an initial sample size

for a computer experiment.

• Criteria can make a difference for post-experimental analysis but have less influence

on initial sample size. The sea-ice example shows that the conflict between the eavg

and emax criteria has implications, as spelled out in Section 7. However, as seen in

Section 6 both criteria support the “n = 10d” rule.

• When p = 2 there is good information about rates at which error decreases with

n and when feasible sample sizes are available. These depend on the parameters τ

and ψ, whose values are not known until the post-experimental stage and are then

useful for deciding how to follow-up. When p 6= 2 much remains to be done.

• In the case that accuracy goals are not met with an initial sample size, a follow-up

strategy is needed, but a full analysis is lacking and is a topic for further inquiry.

APPENDIX A: Proof of Lemma 1

Proof of Lemma 1:

Let D be an n × d random LHD, and let xj and x′j be any two randomly chosen runs

of the design in dimension j. The construction of the LHD ensures that xj 6= x′j , and

hence xj and x′j are dependent random variables. There are a total of
(

n
2

)
possible

pairs of points and each pair is equally likely. Clearly, P (xj = i/(n − 1)) = 1/n and

P (x′j = k/(n − 1)|xj = i/(n − 1)) = 1/(n − 1). Consider any two points that are an

absolute distance of i/(n − 1) apart. By a simple counting argument, there are n − i
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pairs giving rise to this distance. This establishes

P (hj = i/(n− 1)) =
(n− i)(

n
2

) =
2(n− i)

n(n− 1)
, i = 1, . . . , n− 1.

The expected value of h2
j is

E(h2
j) = E

(
i2

(n− 1)2

)
=

1

(n− 1)2

(
2

n(n− 1)

n−1∑

i=1

i2(n− i)

)

=
2

n(n− 1)3

(
n

n−1∑

i=1

i2 −
n−1∑

i=1

i3

)
=

1

6

n(n+ 1)

(n− 1)2
.

Similarly,

Var(h2
j) = E(h4

j ) − E(h2
j)

2 = E

(
i4

(n− 1)4

)
−
(

1

6

n(n+ 1)

(n− 1)2

)2

=
1

(n− 1)4

(
2

n(n− 1)

n−1∑

i=1

i4(n− i)

)

−
(

1

6

n(n + 1)

(n− 1)2

)2

=
1

180

n(n− 2)(n+ 1)(7n+ 9)

(n− 1)4
.

Algebra was carried out in Maple. 2

Proof of Lemma 2:

Following Lemma 1, the expected value is:

E(hj) = E

(
i

(n− 1)

)
=

1

(n− 1)

(
2

n(n− 1)

n−1∑

i=1

i(n− i)

)

=
2

n(n− 1)2

(

n

n−1∑

i=1

i−
n−1∑

i=1

i2

)

=
1

3

(n+ 1)

(n− 1)

Similarly, the variance is:

Var(h2
j ) = E(h2

j ) − E(hj)
2 =

1

6

n(n+ 1)

(n− 1)2
−
(

1

3

(n + 1)

(n− 1)

)2

=
1

18

(n− 2)(n+ 1)

(n− 1)2
.

Algebra was carried out in Maple. 2
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