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Introductory Example

= Pharmaceutical industry client wanted full national dataset with

-~ Demographics, available from ACS = American Community Survey for a
sample of people: ~15M in 5-year compilation

— 23 variables relating to T2DM = Type Il diabetes mellitus, available from
NHANES = National Health and Nutrition Examination Survey for a sample
of people: ~10,000 each year

= Why? Calculate Gini indices of representativity in clinical trials, once
multiple inclusion and exclusion criteria are imposed

= Problem: No versions of Gini indices are available for weighted data




Simple (-Minded) Strategy 1

Cloning: Using fully imputed and mildly fitered NHANES dataset (n =
9813), create a dataset in which each record appears as many times as
Its weight

— Use fractional part of weight as probability to include one more copy

— Resultant dataset has 311,204,241 records




Simple (-Minded) Strategy 2

Resampling (Linkage)

= SynthPop: Create a version of the RTI Synthetic Population
containing 299,444,439 records and all ACS variables. Cross-tab of
age and gender:

--E-

19,848,374 20,470.012 19.381,292 19,791,339 21,388,714 21,783,825 16,053,011 15,604,110

F 20,699,392 21,390,818 18,547,929 18,242,327 19,868,352 21,181,040 14,473,830 11,784,074

= MADIS (Model-Assisted Data Integration System) Light: For each
cell in this table, sample that many records from the subset of the
NHANES dataset that match on age and gender, using probabilities
proportional to weights




Sample Results: No Meaningful Difference

Density Function for BMXBMI: Cloned Dataset 1 Density Function for BMXBMI: Dataset 1
n = 311298000
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What's the Real Issue with these Strategies?

= Not enough variability! Every combination of the 23 NHANES
variables in the synthesized national dataset appears intact in the
NHANES dataset.

= Question to Ponder: Uncertainty quantification. Sources include:
— Sampling and other forms of TSE in ACS

-~ Sampling and other forms of TSE in NHANES, as well as added
uncertainty from imputation

— Cloning or resampling that creates national dataset

= This year’'s candidate for a new form of TSE: data augmentation
error




A Step in the Right Direction: 2015 Obesity Data Challenge

BMI Hot/Cold Spots
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Behind the Curtain

= SynthPop of ~ 200M adults containing 4 categorical predictors: age,
gender, race/ethnicity, educational attainment, matched to released
totals at block group level + block group geography

= NHANES dataset containing the 4 predictors and BMI

[Data harmonization]

= Log-normal models for BMI: 95 distributions, one for each
combination of the 4 predictors (one combination collapsed into
another because of insufficient sample)

= Simulation: for each SynthPop record, simulate a value of BMI from
the associated log-normal distribution

— Produces values of BMI that do not appear in the NHANES data!
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Surveys as Prediction Problems: After
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An Example (avoids reweighting)

2013 Medical Expenditure Panel Survey, Household Component
(n = 26,863)

Simulate nonresponse using Familylncome and TotalExpenditure
- 22,209 respondents, 4654 nonrespondents

Shared frame: Age, Gender, Race/Ethnicity, Region [in US]

— [Recoding]

Unshared frame: EducationalAttainment, Healthinsurance,
MaritalStatus, Familylncome

— [Recoding]

Partition modeling (subsequently, in other contexts, nonparametric
density estimation) with weights used to reconstruct survey variables
for nonrespondents

— Presence of any of 5 diseases (arthritis, asthma, CHD, diabetes, high
cholesterol)

- BMI
— TotalExpenditure (interesting because of atom at 0)



Sample of Results: Any of 5 Diseases

Truth
Any Of Five|  None|  Sum|
2976 1678 4654
Y 9261 12948 22209
Sum 12237 14626 26863
Predictions
Any Of Five] ~ None|  Sum|
2692 1962 4654
Y 9261 12948 22209

Sum 12237 14626 26863



Example of Results: BMI

BMI Residuals for MEPS with Simulated Nonresponse, Nonrespondents Only
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Where Things Stand

Re-weighting amounts to cloning respondent records

Resampling/linkage can be useful, but still cannot create records not
present in the respondent data

Modeling has the potential to
— Create much richer datasets
— Increase usability (initial example)

It is possible to account for modeling-induced uncertainty

— Observed to date: modeling variability is often comparable to sampling
variability




ondering UQ

Kullback-Leibler Divergence of Joint Distribution of
Family Income and Total Expenditure over 500 Linkage Simulations

Kullback-Leibler Divergence of Joint Distribution of
Family Income and Total Expenditure over 369 Linkage Replications
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Unresolved Challenges

Modeling lacks transparency and reproducibility
— “Trust us, we're smart”

- Adding multiple variables requires conditional independence assumptions
that are hard to verify

Too much of the modeling process is manual, therefore not scalable

— ldentification of variables that match
= May be resolvable via Al and high-quality metadata

— Harmonization
— Order of addition of variables

Model validation
— Simulation of additional nonresponse is a good potential strategy

Uncertainty quantification
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