

Can't live with 'em, can't live without 'em

Assumptions – the necessary evil

International Total Survey Error Workshop Bergamo, Italy June 2019

Abby Morgan – <u>abby.morgan@stats.govt.nz</u>, Rebecca Green Patrick Graham

Overview

- Intro to the problem
- Basic theory
- Our application
- Challenging the assumptions
- Conclusions

Intro to the problem

- Coverage estimation has traditionally focused on undercoverage
- Increased admin data = increased risk of over-coverage
- Ideal solution:
 - Mechanism for measuring both under and over-coverage without additional data collection

Intro to the problem

Dual Systems Estimation

		List 2		
		1	0	
List 1	1	n_{11}	n_{10}	N_{1+}
	0	n_{01}	$n_{00}?$	
		$N_{\pm 1}$		

- Closed target population
- No erroneous inclusions
- Homogeneity of capture
- Causal independence
- Perfect linking

Intro to the problem

Dual Systems Estimation

		List 2		
		1	0	
List 1	1	n_{11}	n_{10}	N_{1+}
	0	n_{01}	$n_{00}?$	
		$N_{\pm 1}$		

- Closed target population
- No erroneous inclusions
- Homogeneity of capture
- Causal independence
- Perfect linking

Theory

We start with a cross-tabulation of the Target and the List

If we can estimate the under- and over-coverage of the list, then we can estimate the total target population as:

 $\hat{N}_T = N_L - \hat{n}_{01} + \hat{n}_{10}$

Theory

We represent the three cell probabilities:

We can use the cell probabilities to work out under and over coverage probabilities

$$\begin{aligned} &\Pr(not \ on \ list| \ in \ Target) = \phi^{under} = \frac{\phi_{10}}{\phi_{11} + \phi_{10}} \\ &\Pr(not \ in \ Target| \ on \ List) = \phi^{over} = \frac{\phi_{01}}{\phi_{11} + \phi_{01}} \\ &\widehat{N}_T = N_L \left(\frac{1 - \phi^{over}}{1 - \phi^{under}}\right) \end{aligned}$$

Our application: dwelling coverage

- Consider the Census list of dwellings as the list
- Conduct an independent enumeration for small areas
 - Establish it as the 'source of truth' = target
 - Assume target is achieved

		List (Census)		
		1	0	
Target (Ind.	1	ϕ_{11}	ϕ_{10}	
Enum)	0	ϕ_{01}	0	

Challenging assumptions $\lambda \equiv 1$

		List (Census)	
		1	0
Sample (Ind.	1	$\lambda \phi_{11}$	$\lambda \phi_{10}$
Enum)	0	$(1-\lambda)\phi_{11}+\phi_{01}$	$(1-\lambda)\phi_{10}$

$$\Pr(not \ on \ list| \ in \ Target) = \phi^{under} = \frac{\lambda \phi_{10}}{\lambda \phi_{11} + \lambda \phi_{10}} = \frac{\phi_{10}}{\phi_{11} + \phi_{10}}$$

$$\Pr(not \ in \ Target | \ on \ List) = \hat{\phi}^{over} = \frac{(1-\lambda)\phi_{11} + \phi_{01}}{\phi_{11} + \phi_{01}} \neq \frac{\phi_{01}}{\phi_{11} + \phi_{01}}$$

Relative Bias calculations

Relative bias in the list adjustment =
$$\left(\frac{1-\hat{\phi}^{over}}{1-\hat{\phi}^{under}}\right) \div \left(\frac{1-\phi^{over}}{1-\phi^{under}}\right)$$

Relative bias in the undercoverage estimate
$$=rac{\hat{\phi}^{under}}{\phi^{under}}$$

Relative bias in the overcoverage estimate = $\frac{\hat{\phi}^{over}}{\phi^{over}}$

Challenging assumptions $\lambda \equiv 1$

 $\phi_{under} = 0.03$

 $\phi_{under} = 0.03$

 $\phi_{under} \!=\! 0.03$

Challenging assumptions $\lambda_1 = 1, \lambda_2 \equiv 1$

- Separate λ into λ_1 and λ_2
- λ_1 as sample inclusion given found in Census
- λ_2 as sample inclusion given not found in Census
- Establish $\lambda_1 = 1$
 - Review all records in 01 cell
 - Resolve to truth and restore to 11 cell when in target pop

Challenging assumptions $\lambda_1 = 1, \lambda_2 \equiv 1$

		List (Census)	
		1	0
Sample (Ind.	1	$\lambda_1 \phi_{11}$	$\lambda_2 \phi_{10}$
Enum)	0	$(1-\lambda_1)\phi_{11} + \phi_{01}$	$(1-\lambda_2)\phi_{10}$

$$\Pr(not \ in \ list|in \ target) = \ \hat{\phi}^{under} = \frac{\lambda_2 \phi_{10}}{\lambda_1 \phi_{11} + \lambda_2 \phi_{10}} \neq \frac{\phi_{10}}{\phi_{11} + \phi_{10}}$$

$$\Pr(not \ in \ target|in \ list) = \phi^{over} = \frac{(1-\lambda_1)\phi_{11} + \phi_{01}}{\phi_{11} + \phi_{01}} = \frac{\phi_{01}}{\phi_{11} + \phi_{01}}$$

Challenging assumptions $\lambda_1 = \lambda_2$

 $\phi_{01} = 0.03$, $\lambda_1 = 1$

 $\varphi_{01}=0.03$, $\lambda_1=1$

1.0 4. ϕ_{under} Relative blas in the list adjustment 0.01 0.99 Relative blas in under-coverage Relative blas in over-coverage 0.03 - -0.8 0.05 1.2 0.07 ------- 0.09 0.97 0.6 1.0 **\$**under ϕ_{under} 0.95 0.01 0.01 0.8 0.4 0.03 0.03 - - -----0.05 0.05 0.07 0.07 0.93 0.09 0.09 0.2 0.6 ___ ___ 0.4 0.2 0.4 0.6 0.8 1.0 0.2 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 λ2 λ2 λ_2

 $\varphi_{01}=0.03$, $\lambda_1=1$

Conclusions

- Incorrect assumptions can have material impacts
- Checking and quantifying assumptions provides the opportunity to adjust for them
- Be proactive not reactive

Stats NZ Tatauranga Aotearoa

Discussion questions

- Should we be checking our assumptions if we have no way of mitigating violations?
- Should we be incorporating uncertainty about our assumptions in our inferences?
 - If so, how?