

Projecting the transmission dynamics of SARS-CoV-2 through the post-pandemic period

Marc Lipsitch

NISS-ASA Symposium

May 5, 2020

CCDD COVID-19 team

- Bill Hanage
- Caroline Buckee
- Michael Mina
- Yonatan Grad
- Ed Goldstein
- Xueting Qiu
- Aimee Taylor
- Mary Bushman
- Rene Niehus
- Pablo M de Salazar
- James Hay
- Stephen Kissler

- Tigist Menkir
- Taylor Chin
- Rebecca Kahn
- Christine Tedijanto
- Nishant Kishore
- Lee Kennedy-Shaffer
- Corey Peak (alum)
- Hsiao-Han Chang (alum)
- Matt Kiang (alum)
- Sarah McGough (alum)
- Francisco Cai (alum)
- Jamie Robins
- Andrea Rotnitzky
- Megan Murray

Collaborators

- Caitlin Rivers
- Eric Toner
- Qi Tan
- Ruoran Li
- Satchit Balsari
- Nick Menzies
- Gabriel Leung
- Joseph Wu
- Kathy Leung
- Ben Cowling
- Lauren Childs (alum)
- Nir Eyal
- Peter Smith

1. Estimating seasonality of betacoronaviruses

Beta coronavirus incidence in the US

strain — CoVHKU1 — CoVOC43 Incidence proxy — %positive x %ILI · Positive tests — %positive

Decomposing R_e

 $log(R_{sij}) = log(R_0S_0) + \alpha_{sj} + \lambda_s d_{sij} + \delta_s d_{rij} + \sum_{n=1}^{10} \theta_n B_n(i) + \epsilon_{sij}$

Transmission model

Seasonality of betacoronaviruses

- 21% best fit amplitude of seasonal forcing
- Rest is accounted for by depletion of susceptibles
- This would not be enough alone to control SARS-CoV-2 in summer
- Limitations: incidence proxy, national data, lack of mechanism
- For excellent work on early evidence of SARS-CoV-2 seasonality see preprings of Tamma Carleton (Chicago) and Mauricio Santillana (Harvard)

2. Projecting with and without intervention

Scenarios

Interventions

One-time social distancing (with seasonality)

HARVARD T.H. CHAN

T.H. CHAN

SCHOOL OF PUBLIC HEALTH

Intermittent social distancing

No seasonality:

Cumulative infections 0.0 0.0 0.0

2020

2021

2022

SCHOOL OF PUBLIC HEALTH

Key conclusions

- One time distancing not enough impact not monotonic in duration or intensity
- If estimates are correct about proportion of cases mild vs severe/critical, then several years of intermittent distancing required to get to herd immunity without overwhelming ICU
- Seasonality can exacerbate or improve impact of one-time distancing, but improves outcome of multiple rounds

4. Design of seroprotection studies

Rebecca Kahn, Lee Kennedy-Shaffer, Yonatan Grad, James Robins, Marc Lipsitch.

Potential biases arising from epidemic dynamics in observational seroprotection studies

To appear MedRxiv

Does past infection protect against future infection?

Geographic structure + epidemic dynamics Job (healthcare worker)

Prior infection \longrightarrow Seropositivity $-\frac{2}{3}$ Infection

Methods overview

- Simulate an SEIS' outbreak in a network model
 - Control vs. no control
- Seroprotection
 - 0 (null)
 - 50% reduction in force of infection
 - 95% reduction in force of infection
- Communities
 - 1 vs. 10
 - · Well mixed vs. clustered
- Enroll into observational study & assess serostatus
 - Random sample all on the same day
 - Random sample on different days
 - Matched enrollment (on communnity & day of enrollment)
- Cox proportional hazards comparing infection after enrollment in sero+ vs. sero-

Well mixed, no control, null (HR =1)

Well mixed, clustered, null (HR =1)

HARVARD

T.H. CHAN

SCHOOL OF PUBLIC HEALTH

5. Infomercial: simple Bayesian stats for serosurveys

Planning & analysis tools

https://larremorelab.github.io/covid19testgroup

Estimating SARS-CoV-2 seroprevalence and epidemiological parameters with uncertainty from serological surveys

Daniel B. Larremore,^{1,2*} Bailey K. Fosdick,³ Kate M. Bubar^{4,5}, Sam Zhang⁴, Stephen M. Kissler⁶, C. Jessica E. Metcalf,⁷ Caroline O. Buckee^{8,9}, Yonatan H. Grad^{6*} •••• CENTER *for* Communicable Disease Dynamics

Extra slide

One-time social distancing (without seasonality)

