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Disclosures

* Honoraria/consulting from Merck, Affinivax, Sanofi-Pasteur,
Antigen Discovery

* Research funding (unrelated) from Pfizer

« Unpaid scientific advice to Janssen, Astra-Zeneca, Covaxx
(United Biomedical)
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Two wayvs to use vaccines

Direct Protection Indirect Protection
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Protect the vulnerable Break the backbone of transmission
Requires that the vaccine is effective in these individuals Requires that the vaccine reduces transmission by
(elderly, comorbid) preventing infection and/or reducing infectiousness
Unlikely we will know this at the first “successful” interim Unlikely we will know this for most vaccines because the
analysis because that will be declared when overall primary endpoint in all trials is symptomatic PCR+ disease
efficacy is found, underpowered for subgroups and only some measure infection or infectiousness proxies

Commentary: M Lipsitch and NE Dean in review Diagram: Dan Larremore
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3 partial solutions

 Design trials to detect infection even when subclinical

« Estimate infectiousness In standard individually randomized
vaccine trial using deep sequencing

« Check how much it matters for vaccine prioritization
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Approach 1: Measure impact on infection
using post-trial serology

* Need a marker of infection that is distinguishable from vaccine
Immunity (nonvaccine antibody, N protein)

* Need pre- (ideally) and post-study sera from a sample of (or all)
participants

 Also has the advantage of correcting for bias in estimates of VE
against infection
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Approach 1: Measure impact on infection
using post-trial serology
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Antlbody testing will enhance the power and Analyzing Vaccine Trials in Epidemics With Mild and Asymptomatic Infection
accuracy of COVID-19-prevention trials AJ Epidemiology 2019

Researchers starting clinical trials of prevention measures for COVID-19 have a unique window of opportunity for
collecting blood from the participants, at baseline and at the end of the trial, to be able to incorporate critical data
into their analysis once serological tests for the causative coronavirus become available. Rebecca Kahn*, Matt HItChII’IgS, Rui Wang, Steven E. Bellan, and Marc LIpSItCh

Marc Lipsitch, Rebecca Kahn and Michael J. Mina Nature Med 2020
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Bias in VE estimation when consider only
symptomatic infections
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Bias in VE estimation when consider only
symptomatic infections
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Bias in VE estimation when consider only
symptomatic infections

Vaccine
Control
Symptoms
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Bias in VE estimation when consider only
symptomatic infections

Vaccine
Control
Symptoms
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Bias arises due to differential misclassification of at risk
person-time
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Bias arises due to differential misclassification of at risk

person-time
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Bias arises due to differential misclassification of at risk
person-time
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Control
Symptoms
Perceived at risk

Susceptibles are removed faster than we observe - more so for controls

Apparent incidence in controls is underestimated more than in vaccine group =2 bias
towards the null
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Methods

Generate a network of individuals
grouped into communities

All individuals are also connected to a larger main population

I
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Simulate an epidemic

A connection between two people represents a daily contact between them,
meaning all susceptible individuals have a daily probability of infection from each
of their infectious neighbors of 1-e® ,where B is the force of infection.
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* Enroll people into a trial and individually randomize them to vaccine or control

« The vaccine is leaky meaning it reduces the probability of infection upon
each exposure

« Use a variety of statistical methods to estimate vaccine efficacy with the goal of
identifying the most accurate and efficient

« Determine if one community is representative of the entire trial
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Can get accurate VE¢ estimate without
monitoring time of infection for everyone
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Ro =1.50
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©
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L
= 0.21
0.0 1
1 2 3 4 5 6 /  1.Cox“Perfect Knowledge”

2. Cox: Symptomatic Only
ApproaCh 3. Relative Risk Estimate

4. Corrected Relative Risk Estimate

5. Interval Censored (3 intervals)

6. Interval Censored Cox Model (1

interval)

7. Imputation
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Approach 1 key points

 Unobserved infections bias RCT and observational VE
estimates of impact on infection toward the null

* Worse as time passes -> “waning”

* For trial, can solve the problem with serologic testing of a

random sample once at end of study + imputation of infection
times

* An unbiased estimate of impact on infection would provide
evidence about the potential of a vaccine for herd immunity
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Approach 2: Measure infectiousness In
an individually randomized vaccine trial
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Leveraging pathogen sequence and contact tracing data to enhance vaccine trials in emerging

epidemics
Rebecca Kahn, Rui Wang, Sarah Leavitt, William P. Hanage, Marc Lipsitch

Submitted to Medrxiv and a journal
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Deep sequence plus
contact info In an
i n d IVI d u al Iy- Hybrid (Weighted) |

randomized trial can
provide a nearly
unblased estimate

of vaccine effect on
Infectiousness (VE))

Sequence

builds on prior work led by Colin s
Worby (AJEpid 2017) on use of
deep + consensus sequence to
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Other approaches

Infectiousness/herd effects

* Follow trial participants for
subclinical infection (Oxford AZ
trial)

 Add households, other contacts
to vaccine trials

e Cluster-randomized trials

* Best done during period of early
scarcity when randomization Is
clearly ethical

NE Dean and M Lipsitch submitted
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VE In subgroups

« Combine data from multiple
trials

HHHHHHHHHHHHHHHHHHHH

 Continue trials beyond EUA

 Correlates of protection

* Observational studies (test-
negative for example)
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Approach 3: See If there are robust
approaches to prioritization that don’'t depend
too much on vaccine characteristics
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Model-informed COVID-19 vaccine prioritization strategies by age and serostatus
Kate M. Bubar,!2* Stephen M. Kissler,® Marc Lipsitch3#, Sarah Cobey®, Yonatan H. Grad?, Daniel B. Larremore®7*

SLIDES FOR THIS PART BY DAN LARREMORE (AN IMPROVEMENT)
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The model for SARS-CoV-2:
-

People move between the compartments of this “compartmental model”:

i

Susceptible Exposed Infected Recovered

infection rate symptom onset recovery rate

@ o
S > 2 > >

But in this kind of model, everyone is the same. We need more structure!

SCHOOL OF PUBLIC HEALTH
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Stratiflied compartmental models
e.g. POLYMOD-type age-structured SEIR models

OFEN (& ACCESS Fraal y auailabla snling PLOS memicee

Social Contacts and Mixing Patterns Relevant to :z (@ Germany 10 South Africa
the Spread of Infectious Diseases
Jo#l Mosseng ", Niel Hens®, Mark Jit", Philippe Beutels®, Kari Auranen®, Rafael Mikolajezyk’, Mareo Massari®, 60 ]
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The POLYMOD study and &>
. . 20
others like it have mapped o r
age—cc:rntact structure. 0 s

0 10 20 30 40 50 &0 70 &0 0O 10 20 30 40 50 60 7O &80

Age-stratified SEIR models allow us to ask more targeted questions!
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knowns: unknowns:

1. The vaccine will initially be scarce. 1. Safety: who is the vaccine approved for?

Efficacy: how protective is the vaccine”

. Age-related effects: is the vaccine equally
effective across ages”?

4. Vax properties: transmission blocking?

SRS

variables:

1. Demographics: what'’s the age distribution in the population?

2. Age-contact structure: are families multihousehold” Do people of
all ages work? Strict retirement age”

3. Seroprevalence: what fraction of the population has antibodies
already”? And, do they correlate with protection?
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How do different prioritizations play out?

A

Age-distribution of vaccines (%)
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What about variation in efficacy by age?
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Vaccine efficacy

- Constant
= Age-dependent

Allocation Strategy

M Adults 20-49
W All Ages

B Adults 60+
B Under 20

W Adults 20+
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Prioritizing the elderly (similarly,
comorbid) to reduce deaths Is robust to:
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Vaccine that protects only against symptoms/death:

Variations in efficacy by age no effect on infections
VEs=0,VE =0, VEp =1
Assuming an all-or-nothing vaccine. (@=1w=1)
Baseline efficacy | Hinge Age | Tipping point when vaccine supply is: A 100
5% of pop | 15% of pop | 25% of pop _
59 - - - E 75
50% 69 £
79 - - - 3
59 i i 0.8% i
75% 69 - S
79 R R . E 25
59 - - 3.9%
100% 69 - 0
79
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Prioritizing the elderly (similarly,
comorbid) to reduce deaths is robust to:

VE =100%

SCHOOL OF PUBLIC HEALTH

Belgium United States
100 100
g g
E 75 E 75
k] T
] 5
£ 50 £ 50
c c
Demography . g
-8 25 -8 25
i 4 .
i . Also to leaky or all-or-nothing
0 10 20 30 40 50 0 10 20 0 40 50
Total vaccine supply (% of pop) Total vaccine supply (% of pop) Va Cci n e
India Spain
100 100
= &
@ 75 @ 75
5 S
m @
5 5
£ 50 £ 50
c c
2 =]
° o
3 25 8 25
7] 7]
14 x
0 0
0 10 20 30 40 50 0 10 20 30 40 50
Total vaccine supply (% of pep) Tetal vaccine supply (% of pop)
Zimbabwe Brazil
100 100
g 8
@ 75 @ 75
%= &=
@ @
S S
£ 50 £ 50
5 s
e S 2
g g
0 0
0 10 20 30 40 50 0 10 20 30 40 50

Total vaccine supply (% of pop) Total vaccine supply (% of pop)



®e e CENTER for COMMUNICABLE Disease Dynamics @ :'IlﬁRCVI-II‘:R HHHHHHHHHHHHHHHHHH

Summary

* When we have to roll out a vaccine, we will have imperfect information
about efficacy in high-impact subgroups (elderly, comorbid) and impact on
Infection/transmission

* Post-trial serology and regular viral testing of all participants can help
estimate impact on transmission

* Virus sequencing during trial can provide nearly unbiased estimate of
Infectiousness impact

* Basic principle to prioritize elderly, comorbid is robust to many different
vaccine variants

* Have not considered prioritizing essential or HC workers.

- Still need to know these properties of vaccines: to know how many doses
needed, how well transmission-blocking strategies can work, etc.



