Modelling COVID-19 transmission and control

Adam Kucharski
Associate Professor & Sir Henry Dale Fellow
Department of Infectious Disease Epidemiology

COPSS-NISS COVID-19 Data Science Webinar
Jan 2021

cmmid.github.io
Outline

1. Understanding disease dynamics
2. Situational awareness
3. Exploring control scenarios
A simple model: Use reproduction number, R, to project short-term growth

- Initial cases
- New cases
- Time
- R above 1
- R = 1
- R less than 1
Datasets can have limitations, so can combine with models to extract more robust insights about underlying (and often unobserved) features of infection.
Datasets can have limitations, so can combine with models to extract more robust insights about underlying (and often unobserved) features of infection.

1. Understanding disease dynamics: COVID-19

Pre-symptomatic transmission

Age patterns of COVID-19 severity

1. Understanding disease dynamics: COVID-19

Reproduction number over time:

Wang et al. MedRxiv, 2020
Kucharski et al. Lancet Inf Dis, 2020
1. Understanding disease dynamics: COVID-19

Uncertainty in real-time case data...

...so useful to incorporate multiple data sources in early models:

- Case data in Wuhan
- Internationally exported cases from Wuhan
- Infections on evacuation flights
1. Understanding disease dynamics: COVID-19

Early estimates of severity in China:

Additional data:

Symptomatic case fatality risk: 1.4% (0.9–2.1%) 1.4% (1.2–1.5) 1.2% (0.3–2.7%)

Infection fatality risk: – 0.7% (0.4–1.3) 0.6% (0.2–1.3%)

Verity et al. *Lancet Inf Dis*, 2020

Russell et al. *Eurosurveillance*, 2020
2. Situational awareness: COVID-19

Models can help estimate and monitor key epidemiological values in real-time.

• Estimation of infection curves, reproduction number and short-term forecasts

• Evaluate effectiveness of interventions, e.g. association between R vs control measures

2. Situational awareness: COVID-19

Estimates from social mixing data

Estimates from REACT-1 community testing
2. Situational awareness: COVID-19

Estimates from social mixing data

Pre-COVID R

Post-lockdown R

Type of Contact
- All
- Physical

Density

Jarvis et al. BMC Med, 2020
cmmid.github.io
2. Situational awareness: COVID-19

R estimates can depend on data source:

Sherratt et al. MedRxiv, 2020
Gostic et al. MedRxiv, 2020
B.1.1.7 variant

Davies et al. CMMID Report, 2020
Volz et al, Imperial College Report 42, 2020
B.1.1.7 variant

Tom Wenseleers (@TWenseleers)
Data: COG-UK & Statens Serum Institut Report, 2021
3. Exploring control scenarios: COVID-19

Models can synthesize available evidence to help answer ‘what if?’ questions.

3. Exploring control scenarios: COVID-19

Models can synthesize available evidence to help answer ‘what if?’ questions.

Epi parameters → Transmission model → Burden model

Davies et al. Lancet Public Health, 2020
3. Exploring control scenarios: COVID-19

Models can synthesize available evidence to help answer ‘what if?’ questions.
Summary

1. Understanding the infection
2. Situational awareness
3. Exploring control scenarios

Key uses of models:
– Extract additional insights from available data
– Identify features of dynamics that may not be predictable otherwise
– Compare possible control scenarios