02/04/21

JOHNS HOPKINS UNIVERSITY

Rapid Sequencing of SARS-CoV-2 to enable Epidemiologic Surveillance, Clinical Insight, and Pathobiology

Winston Timp Johns Hopkins University Department of Biomedical Engineering

There are many kinds of viruses

And at least as many mechanisms of hijacking cells

Classification

- Baltimore Virus Classification System
- Based on the viral lifecycle and how nucleic acid is translated
- Influenza is a type V virus
- SARS-CoV-2 is a type IV virus
- Positive strand RNA viruses are especially concerning because – in principle, the viral genome itself could be translated to protein.

Coronaviruses

- Generally there are 7 coronaviruses that affect humans
- You haven't heard of these 4:
 - HCoV-OC43
 - HCoV-HKU1
 - HCoV-229E
 - HCoV-NL63
- They are mild and cause 15% of the "common cold"
- You have heard of these three:
 - SARS-CoV AKA SARS (2003)
 - Infected 8000 with a CFR of 10%
 - MERS-CoV AKA MERS (2012)
 - Total cases ~2500, CFR 37%
 - SARS-CoV-2 (COVID19)

Image: CDC/Alissa Eckert, MS; Dan Higgins, MAMS

The Bad Guy

CoV infection cycle

- Virus enters cell through either endocytosis or membrane fusion
- The viral RNA gets translated to make helicase and replicasetranscriptase complex (RdRp)to make more RNA, and the proteins from the virus
- Packaged up in Golgi apparatus, leaves the cell

First genome

Novel 2019 coronavirus genome

Novel 2019 coronavirus

6 🖋 Jan 10

10th January 2020 This posting is communicated by Edward C. Holmes, University of Sydney on behalf of the consortium led by Professor Yong-Zhen Zhang, Fudan University, Shanghai

The Shanghai Public Health Clinical Center & School of Public Health, in collaboration with the Central Hospital of Wuhan, Huazhong University of Science and Technology, the Wuhan Center for Disease Control and Prevention, the National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control, and the University of Sydney, Sydney, Australia is releasing a coronavirus genome from a case of a respiratory disease from the Wuhan outbreak. The sequence has also been deposited on GenBank (accession MN908947 20.0k) and will be released as soon as possible.

Update: This genome is now available on GenBank and an updated version has been posted (20.0k).

Disclaimer:

Please feel free to download, share, use, and analyze this data. We ask that you communicate with us if you wish to publish results that use these data in a journal. If you have any other questions –then please also contact us directly.

Professor Yong-Zhen Zhang, Shanghai Public Health Clinical Center & School of Public Health, Fudan University, Shanghai, China.

email: zhangyongzhen@shphc.org.cn

SARS-CoV-2 Genome

ML_845512.2 Severe acute respiratory synarose coronovirus 2 isolate Wuban-Hu-1, complete genome

ATTANKATTIANACTUCAGE/AUCACTUCA THE DESIGN THAT IS AN A STREET THAT IS AN A ST ANT THE TRADE OF THE AND THE A NICANT THAT OF THE DATE AND AND THE DATE AND AND THE DATE AND THE DATE THE DATE THE DATE THE DATE AND THE DATE AND THE DATE AND THE DATE THE DATE THE DATE AND THE DATE AND THE DATE AND THE DATE THE DAT ANTER GRADUET DE CONTRACTOR CONTR NERVICE THE ACCOUNT OF A DEVICE AND A DEVIC TETTER AN CASE AND AND THE AND TARTECE DATE AND THE A MOREMAN IN ALL/ADAMA MAGENETICIES OF ALL/ADAMA AND ALL/ADAMA THE ADDRESS OF ADDRESS NE SARRET TRAMANDATION IN CONTRACTOR IN CONTRACTOR INCOMENDATION OF TRADATION OF T SALES A LAN ALTERIA SALES AND ALTERIAS AND ALTER OTESTIC TO A CONTRACT OF A CON IRCONTINUE/IR ATTACT TRANSPORT AND A TRANSPO TRATICUTOR CONTRACTOR AND THE ACCOUNT OF THE ACCOUN AT SEC A SEC A STREET AND ADDRESS AND ADDR AND A CALE ATTIECTEMPAREMENTATESCENTRATINGESCATACOMMERCICAL CARGESCENTRATINGESCATACOMMERCICAL CARGESCENTRATINGESCATACOMMERCICAL CARGESCENTRATINGESCATACOMMERCICAL CARGESCENTRATINGESCATACOMMERCICAL CARGESCENTRATINGESCATACOMMERCICAL CARGESCENTRATINGESCATACOMMERCICAL CARGESCENTRATINGESCATACOMMERCICAL CARGESCENTRATINGESCATACOMMERCICAL CARGESCENTRATINGESCATACOMMERCICAL CARGESCENTRATING

SARS-CoV-2 Viral Genome Characteristics

- Genus: Betacoronavirus
 - Lineage A (Embecovirus): hCoV-OC43, hCoV-HKU1
 - Lineage B (Sarbecovirus): SARS-CoV, SARS-CoV-2
 - Lineage C (Merbecovirus): MERS-CoV, bat HKU4 and HKU5
 - Lineage D (Nobecovirus): bat coronavirus HKU9

Genome structure

- Positive-sense RNA virus
- Polyadenylated
- 29,903 nucleotide, linear genome
- 13 open reading frames
- 29 potential gene products

https://www.nytimes.com/interactive/2020/04/03/science/coronavirus-genome-bad-news-wrapped-in-protein.html

- To assemble from reads, you look for overlaps and try to stitch it back together
- Like a jigsaw puzzle
- Bigger the pieces, the easier the puzzle
- Many computational tools exist to do this: e.g. canu, spades, megahit

1. Fragment DNA and sequence

- 2. Find overlaps between reads
- ...AGCCTAGACCTACAGGATGCGCGACACGT GGATGCGCGACACGTCGCATATCCGGT...
- 3. Assemble overlaps into contigs

Family roots of SARS-CoV-2

Article Open Access Published: 03 February 2020

A pneumonia outbreak associated with a new coronavirus of probable bat origin

Peng Zhou, Xing-Lou Yang, [...] Zheng-Li Shi 🖂

Nature 579, 270-273(2020) Cite this article

ARTIC network

Leveraging work by the ARTIC network (Rambaut, Goodfellow, Loman, Rowe) - using two pools of tiled amplicons. SARS-CoV-2 genome (30kb) tiled using Primal Scheme (Primer3

wrapper) with 98 primers in 2 pools:

https://artic.network/ncov-2019

Quick et al Nature Protocols 2017 12

Initiating Sequencing in the JHH Diagnostics Laboratory

Initial sequencing capacity was established 3/5/20

- Sequenced positive control for diagnostic PCR
- 100% concordance with published genome
- Limited sample throughput (ARTIC V1, 1/flowcell)

Expanded capacity initiated 4/1/20

- Optimized data flow and informatics
- Revised sample preparation approach (ARTIC v3)
- Increased throughput (10+ per flowcell)
- Large batch capabilities (80+ samples / plate)

Comparing Sequences – Phylogenetic Trees

https://nextstrain.org/narratives/trees-background/?n=3 14

Reconstructing Viral Transmission Networks

Spatial transmission networks can be reconstructed by tracking:

- Mutations in viral genomes
- Date of collection
- Location of collection

This was demonstrated in real-time during the 2014-15 Ebola outbreak (right)

SARS-Cov-2 International Transmission Networks

Hadfield et al *Bioinformatics* 2018 Video generated from Nextstrain.org on 4/18/20

SARS-CoV-2

- We worked over the summer to correlate with initial patient phentotype/co-morbidities and patient outcomes
- We don't have the power to say for sure, but nothing obvious pops up, in agreement with other global data

Sars-CoV-2

- Current phylogeny shows diversity and evolution of the virus
- Three current variants of concern:

	B.1.1.7	8.1.351	P_1	
Alternate name	501Y.V1	501Y.V2 South Africa 21 9	501Y.V3 Brazil 17 10	
Country identified	United Kingdom			
Mutations	23			
Spike mutations	8			
Key RBD, spike mutations beyond N501Y in all	E69/70 deletion, P681H 144Y deletion, A570D	E484K, K417N, orf1b deletion	E484K, K417T, orf1b deletion	
Other mutations, including N-terminal	T7161, S982A, D1118H	L18F, D80A, D215G, Δ242- 244, R264I, A701V	L18F, T20N, P265, D138Y, R1905, H655Y, T10271	
Transmissibility Δ	>50% increased	Not established	Not established	
Lethality ∆	Not resolved	?	?	
Immune escape/ Vaccine efficacy reduction	Not established Partial in Novavax trial (96->86%)	Yes Partial resistance In 2 vaccine trials	Likely Partial resistance	
Countries reported (not = to local transmission)	73	31	9	
US States reported	32	2	1 (travel)	

Clades over time

- The original clades have been depleted in favor of later clades but it seems that this was largely due to sampling effects and different efficienceies of NPI rather than mutations
- B.1.1.7/20I/501Y.V1 may be different, it seems to have higher transmissibility
- The community largely expects that with vaccine based selective pressure on the virus, we'll start to see more changes in the clade distributions

Mutation Rate

Vaccines!

car

UTR sig S protein_mut 3'-UTR poly(A)

- Using the sequence information we have from the virus, we can **rapidly** design vaccines
- mRNA Vaccine was actually designed in essentially a weekend back in March – testing efficacy and safety took longer
- Spike sequence used as the sequence whole spike for Pfizer, just the RBD for Moderna
- Mutations introduced (K986P, V987P) to stabilize the protein
- Pseudouridine (ψ) instead of Uridine (U) to prevent innate immune uptake and improve translation

GA GAA¥AAAC	$\Psi A G \Psi A \Psi \Psi C \Psi \Psi$	CYGGYCCCCA	CAGACΨCAGA	GAGAACCCGC	50
CACC AYGYYC	GYGYYCCYGG	WGCWGCWGCC	ΨϹΨĠĠΨĠΨĊĊ	AGCCAGΨGΨG	100
YGAACCYGAC	CACCAGAACA	CAGCYGCCYC	CAGCCYACAC	CAACAGCΨΨΨ	150
ACCAGAGGCG	ΨGΨACΨACCC	CGACAAGGΨG	ΨΨCAGAΨCCA	GCGYGCYGCA	200
CYCYACCCAG	GACCYGYYCC	ΨGCCΨΨΨCΨΨ	CAGCAACGΨG	ACCYGGYYCC	250
ACGCCAΨCCA	CGYGYCCGGC	ACCAA¥GGCA	CCAAGAGAYY	CGACAACCCC	300
GYGCYGCCCY	ΨCAACGACGG	GGΨGΨACΨΨΨ	GCCAGCACCG	AGAAGΨCCAA	350
CAYCAYCAGA	GGCΨGGAΨCΨ	ΨCGGCACCAC	ACYGGACAGC	AAGACCCAGA	400
GCCΨGCΨGAΨ	CGΨGAACAAC	GCCACCAACG	ΨGGΨCAΨCAA	AGYGYGCGAG	450
ΨΨĊĊΑĠΨΨĊΨ	GCAACGACCC	CYYCCYGGGC	GYCYACYACC	ACAAGAACAA	500
CAAGAGCΨGG	AYGGAAAGCG	AGYYCCGGGY	GWACAGCAGC	GCCAACAACΨ	550
GCACCΨΨCGA	GYACGYGYCC	CAGCCYYYCC	ΨGAΨGGACCΨ	GGAAGGCAAG	600
CAGGGCAACΨ	ΨCAAGAACCΨ	GCGCGAGΨΨC	GYGYYYAAGA	ACAΨCGACGG	650
СѰАСѰѰСААG	AYCYACAGCA	AGCACACCCC	ΨΑΨCAACCΨC	GYGCGGGAYC	700
<i>YGCCYCAGGG</i>	СФФСФСФССФ	CYGGAACCCC	ΨGGΨGGAΨCΨ	GCCCAΨCGGC	750
ΑΨCAACAΨCA	CCCGGYYYCA	GACACΨGCΨG	GCCCΨGCACA	GAAGCΨACCΨ	800
GACACCΨGGC	GA¥AGCAGCA	GCGGA¥GGAC	AGCYGGYGCC	GCCGCΨΨACΨ	850
AYGYGGGCYA	CCYGCAGCCY	AGAACCΨΨCC	ΨGCΨGAAGΨA	CAACGAGAAC	900
GGCACCAΨCA	CCGACGCCGΨ	GGAYYGYGCY	CYGGAYCCYC	ΨGAGCGAGAC	950
AAAG¥GCACC	CYGAAGYCCY	ΨCACCGΨGGA	AAAGGGCAYC	WACCAGACCA	1000
GCAACΨΨCCG	GGΨGCAGCCC	ACCGAAΨCCA	ΨCGΨGCGGΨΨ	ССССААФАФС	1050
ACCAAΨCΨGΨ	GCCCCYYCGG	CGAGGYGYYC	AA¥GCCACCA	GAYYCGCCYC	1100
ΨGΨGΨACGCC	ΨGGAACCGGA	AGCGGAΨCAG	CAAYYGCGYG	GCCGACΨACΨ	1150
CCGYGCYGYA	CAACΨCCGCC	AGCYYCAGCA	CCYYCAAGYG	CYACGGCGYG	1200
ΨCCCCΨACCA	AGCΨGAACGA	ССҰĞҰĞСҰҰС	АСАААСGΨGΨ	ACGCCGACAG	1250
СѰѰСĠѰĠѦѰС	CGGGGAGA¥G	AAG¥GCGGCA	GAYYGCCCCY	GGACAGACAG	1300
GCAAGAΨCGC	CGAC¥ACAAC	WACAAGCW GC	CCGACGACΨΨ	CACCGGCΨGΨ	1350

Acknowledgments

JHU SoM/DoM

Heba Mostafa Stuart Ray Oluwaseun Falade-Nwulia Lauren Sauer Paul Morris Victoria Gniazdowski

JHU/APL

Peter Thielen Thomas Mehoke Jared Evans Craig Howser Brian Merritt Amanda Ernlund

<u>JHU WSE</u>

Winston Timp Michael Schatz Steven Salzberg Srividya Ramakrishnan Melanie Kirsche Norah Sadowski Yunfan Fan Sam Kovaka Ariel Gershman Alaina Shumate Ales Varabyou Alex Szalay Gerard Lemson **Dmitry Medvedev**

<u>JHBSPH</u>

Justin Lessler Shirlee Wohl

VDR/VPR

Julie Messersmith

Support from the JHU COVID-19 Research Response Program

RNA -> DNA: Reverse Transcriptase

- Reverse transcriptases originally isolated from viruses by Baltimore and Temin independently (they shared the Nobel for this in 1975)
- Eukaryotic organisms also have reverse transcriptases for mobile elements of the genome like retro transposons and for replication at the ends of chromosomes (telomeres)
- Can be primed with poly-dT (against the polyA at the end of mRNA), random, or gene specific esequendces.

Sequencing Methods

- Starts from purified RNA
- Vast majority of RNA is ribosomal, but can be depleted either through digestion at 5' monophosphate or through hybridization and digestion
- Then fragmentation and random priming to make "complentary DNA" or cDNA using a "reverse transcriptase"
- Then make a sequencing library as "normal"