

Applications of R Shiny to Explore, Evaluate and Improve Total Survey Quality

Location (-93.6842, 41.9883)
Year 2017
Category Soybeans
Value 5
Color

Xiaodan Lyu

Center for Survey Statistics & Methodology

Joint work with Heike Hofmann, Emily Berg, Jie Li

IOWA STATE UNIVERSITY

Introduction

- Focus on non-sampling errors
 - Sources: data collection, data processing, modeling/estimation
 - Solutions: iterative review and editing, ...
- 9 dimensions of total survey quality (Biemer, 2010)
 - accuracy, credibility, comparability, usability/interpretability, relevance, accessibility, timeliness/punctuality, completeness, and coherence

Introduction

- R Shiny (Chang et al., 2018)
 - * An R package for developing reactive dashboards
 - Direct and immediate interaction with data in a web-browser
 - * Shiny user showcases https://shiny.rstudio.com/gallery/
 - Low cost and simple to start with
 - Password-protected Shiny Apps hosted on internal servers
 - Application to survey: a social-network based survey (Joblin and Mauerer, 2016)

National Resources Inventory

- A longitudinal survey on non-federal US land
 - conducted by USDA-NRCS and ISU-CSSM
 - PSU = .5 mi x .5 mi segment, SSU = 3 point locations per PSU
- Estimation of change over time
 - surface area by land cover/use
 - average water and wind erosion on cropland and pastureland
- Record level data set (pointgen)
 - location with a single weight and complete data

National Resources Inventory

- Conservation Effects Assessment Project (CEAP)
 - On-site study subsampled from NRI cropland or pastureland
 - * Farmer interview (crop management, conservation practice, ...)
 - Agricultural Policy Environmental eXtender (APEX) model
 - Output: measurements of soil erosion and chemical runoff
- Small Area Estimation (SAE, Rao and Molina, 2015)
 - Direct estimates for small domains are unreliable
 - Model-based SAE uses population-level auxiliary information

iNtr: an interactive NRI table review tool

Table 2 - Land Cover/use of non-Federal rural land, by State and year In thousands of acres, with margins of error

State	Year	Cropland	CRP land	Pastureland	Rangeland	Forest land	Other rural land	Total rural land
Alabama	1982	4,464.7 ±176.9	-	3,793.9 ±186.4	53.7 ±47.3	20,876.8 ±184.4	523.5 ±73.2	29,712.6 ±112.8
	1987	3,944.7 ±187.9	207.5	3,643.8 ±157.9	52.8 ±45.6	21,160.9 ±181.1	491.2 ±74.0	29,500.9 ±116.9
	1992	3,126.2 ±192.4	535.2	3,753.3 ±147.5	52.7 ±45.6	21,250.7 ±189.7	611.7 ±84.8	29,329.8 ±124.5
	1997	2,915.5 ±209.9	522.2	3,558.0 ±134.4	53.8 ±46.7	21,325.9 ±200.6	590.9 ±78.9	28,966.3 ±139.8
	2002	2,508.5 ±183.0	504.6	3,452.2 ±194.7	50.7 ±108.9	21,550.4 ±250.2	505.8 ±83.3	28,572.2 ±151.7
	2007	2,200.2 ±180.6	459.8 	3,434.9 ±177.3	50.7 ±108.9	21,668.5 ±262.4	554.6 ±90.2	28,368.7 ±164.9
	2012	2,217.0 ±189.0	329.2	3,302.9 ±175.9	50.7 ±108.9	21,787.8 ±264.1	591.6 ±85.8	28,279.2 ±168.1
	2015	2,274.9 ±194.2	225.6	3,220.2 ±187.2	50.7 ±108.9	21,887.4 ±263.4	591.6 ±85.2	28,250.4 ±168.1
Arizona	1982	1,253.0 ±146.6	-	83.6 ±50.4	33,366.4 ±1,026.6	4,572.6 ±862.1	1,711.8 ±577.2	40,987.4 ±270.6
	1987	1,234.6 ±145.5	0.0	76.6 ±40.2	33,395.7 ±1,046.3	4,553.8 ±860.8	1,784.4 ±594.7	41,045.1 ±286.7
	1992	1,199.9 ±148.8	0.0	83.3 ±36.0	33,796.0 ±1,069.5	4,434.9 ±881.6	1,801.6 ±569.8	41,315.7 ±295.4

Table 14 - Estimated average annual sheet and rill erosion on non-Federal rural land, by State and year Tons per acre per year with margins of error

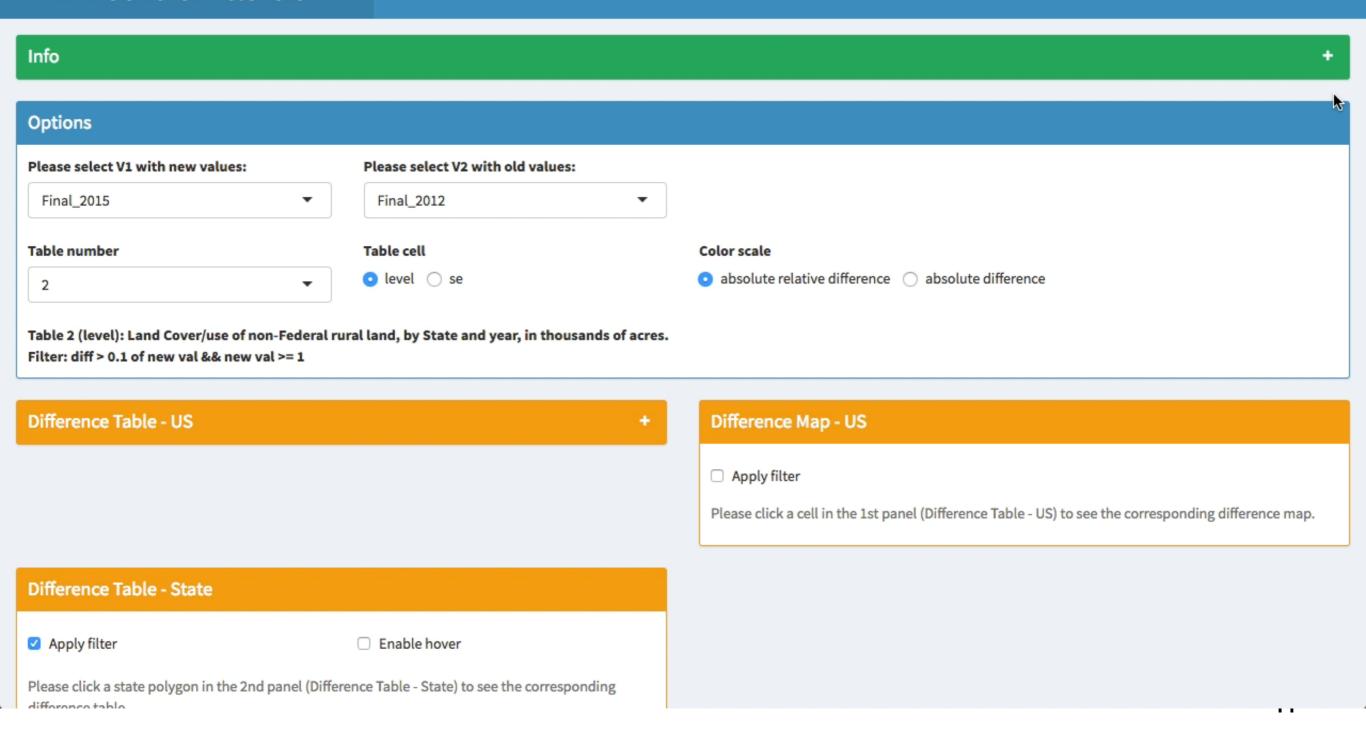
State	Voor		Cropland	CDD land	Pastureland	
State	Year	Cultivated Non-Cultivated		Total		CRP land
Alabama	1982	5.02 ±0.29	0.41 ±0.25	4.73 ±0.28		0.65 ±0.08
	1987	4.39 ±0.29	0.32 ±0.07	4.07 ±0.27	2.32 ±1.39	0.51 ±0.07
	1992	4.86 ±0.26	0.37 ±0.17	4.35 ±0.23	0.62 ±0.27	0.49 ±0.06
	1997	4.72 ±0.25	0.35 ±0.16	4.18 ±0.22	0.76 ±0.38	0.52 ±0.06
	2002	4.47 ±0.30	0.41 ±0.11	3.62 ±0.29	0.68 ±0.42	0.53 ±0.07
	2007	4.34 ±0.47	0.36 ±0.09	3.34 ±0.41	0.51 ±0.24	0.44 ±0.04
	2012	3.87 ±0.34	0.39 ±0.07	3.03 ±0.33	0.62 ±0.37	0.42 ±0.06
	2015	4.22 ±0.43	0.39 ±0.07	3.31 ±0.42	0.51 ±0.41	0.44 ±0.08
Arizona	1982	0.59 ±0.06	0.45 ±0.04	0.57 ±0.06		0.15 ±0.08
	1987	0.65 ±0.06	0.44 ±0.05	0.62 ±0.04	0.00	0.11 ±0.03
	1992	0.67 ±0.05	0.27 ±0.03	0.60 ±0.05	0.00	0.15 ±0.04

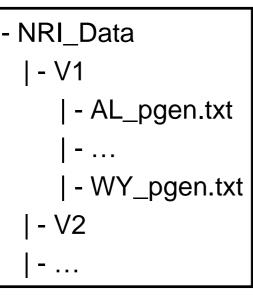
2015 NRI Table Review

Reasons

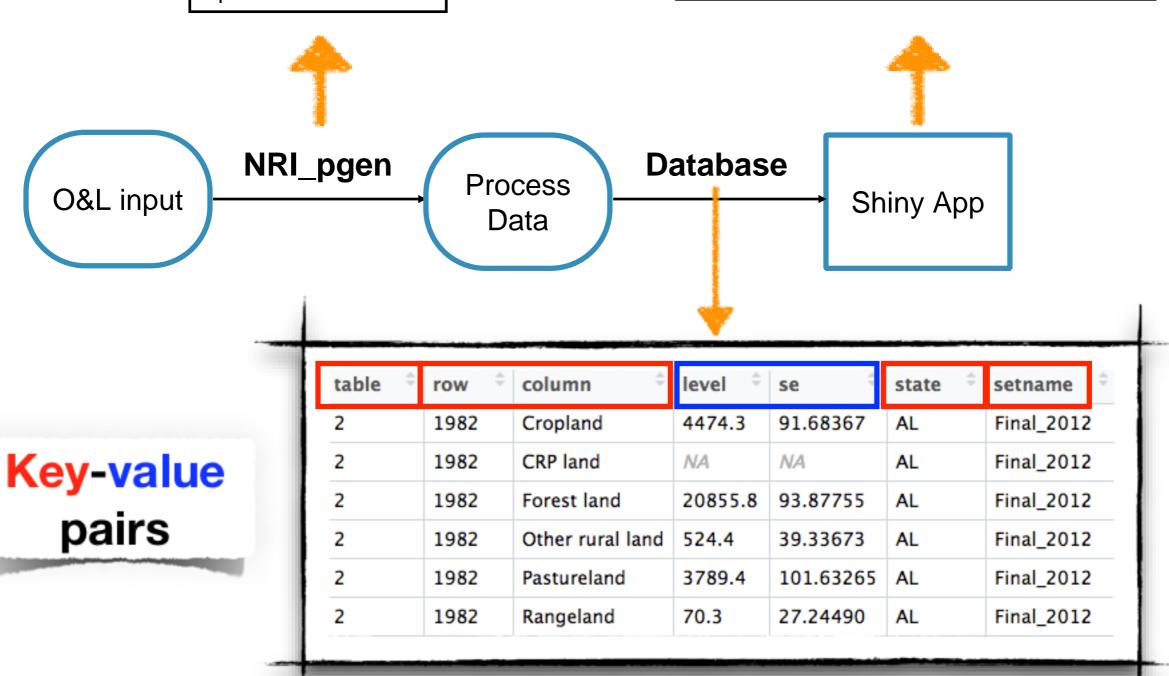
Multiple estimation runs before final publication

Differences


- The 2015 NRI versus the final 2012 NRI
- * A new 2015 estimation versus an earlier 2015 estimation


Results

- Expected differences: updated algorithms, data edits, ...
- * Surprising differences: problematic data input, ...

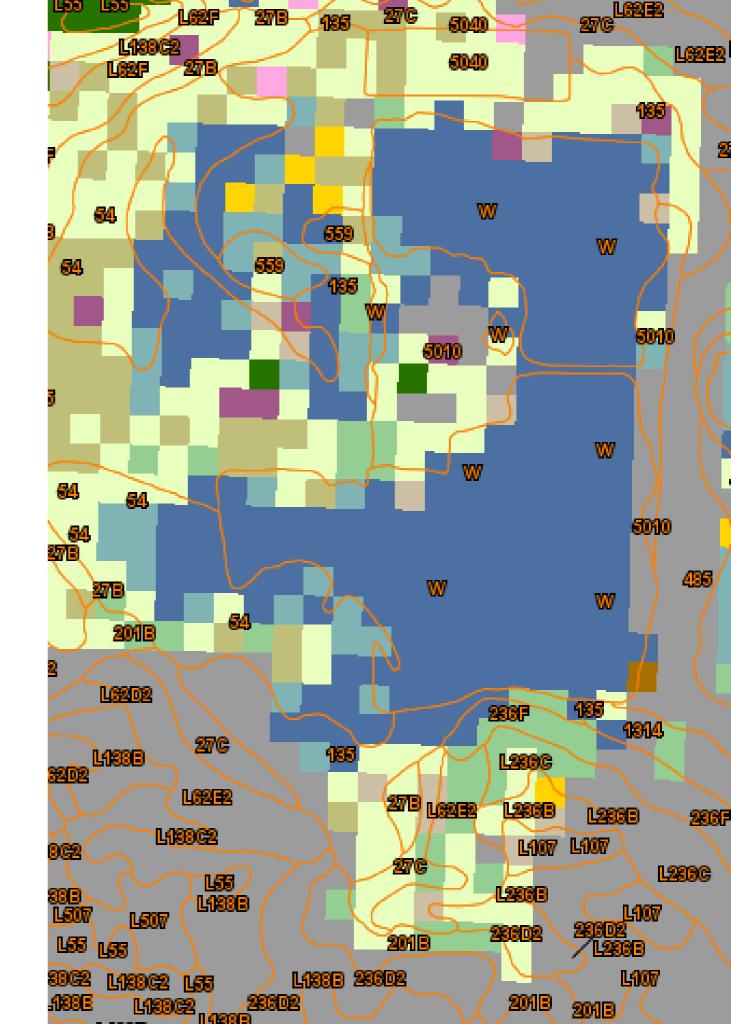

annielyu.com/#shiny

NRI Data Review Visualization

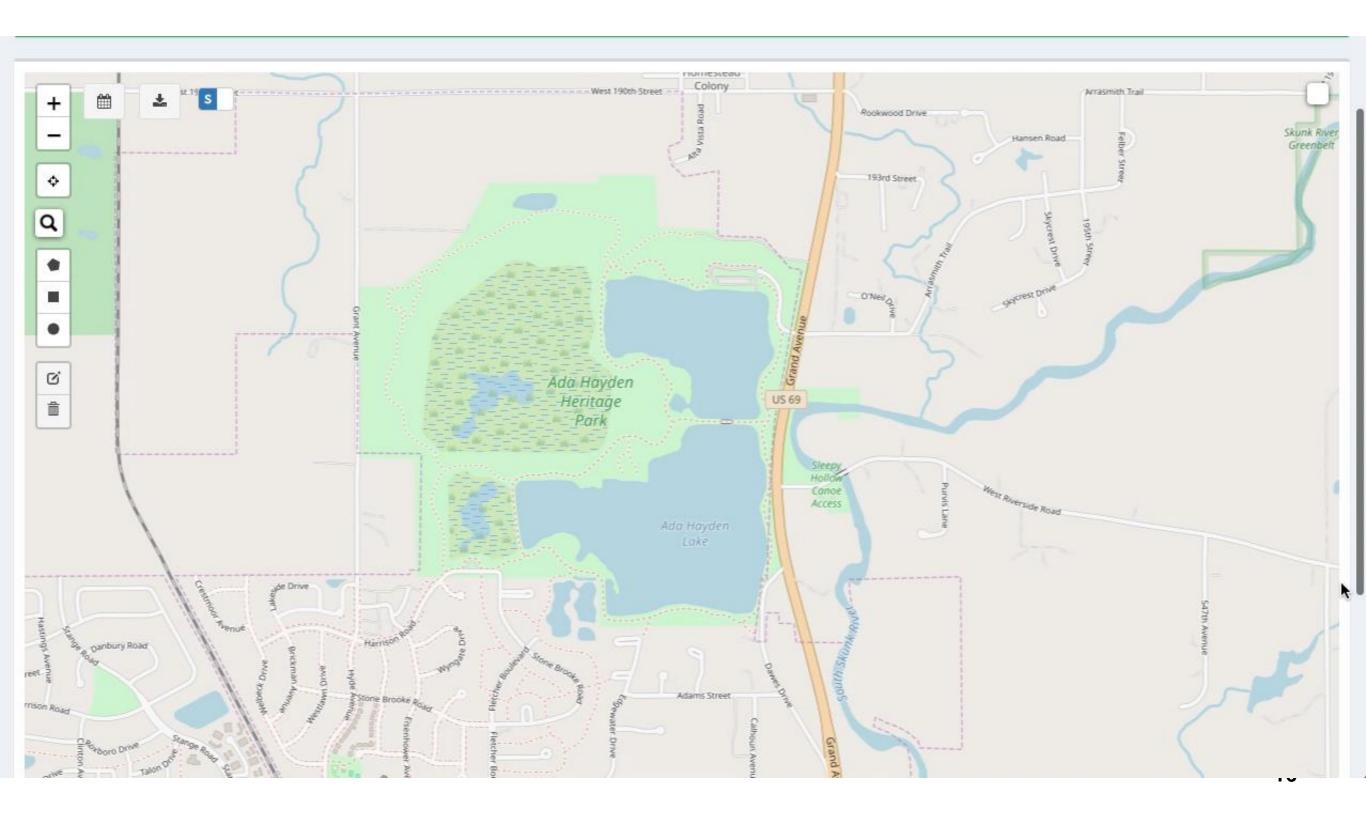
- app.r
- template.r
- help.r
- NRItables_by_version_state_year.csv
- table_structure.csv
- us_nri_mapdf.rds

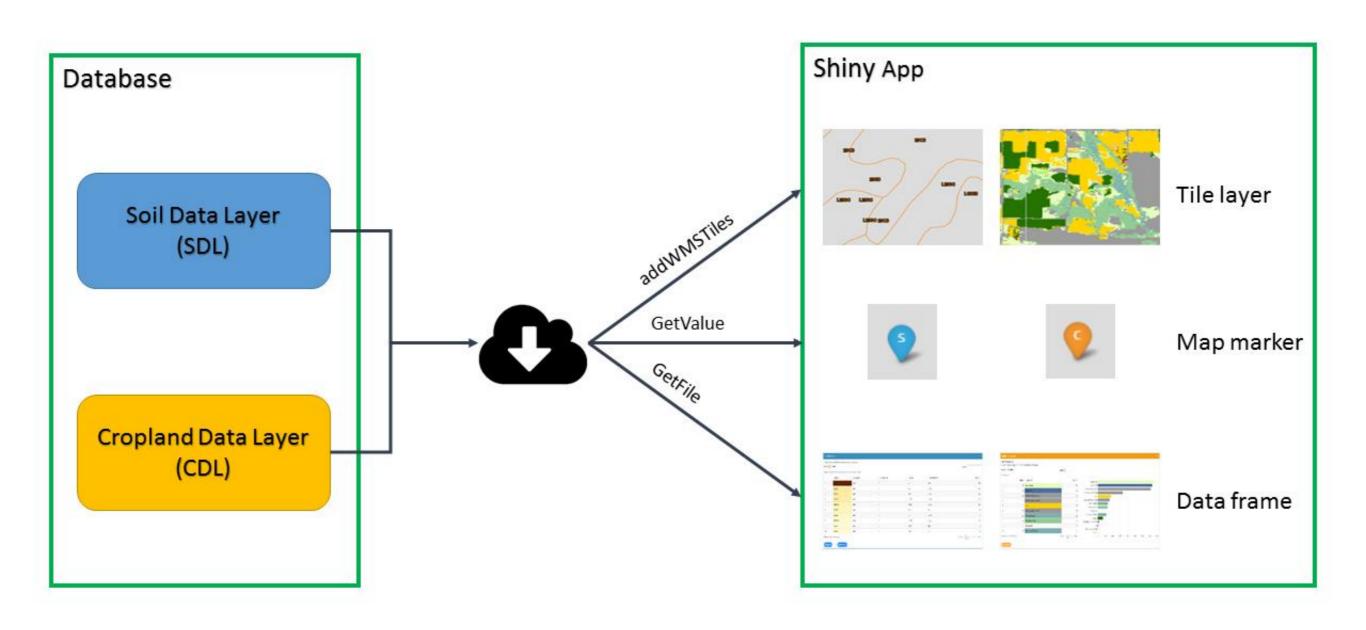
viscover: visualize soil and crop data and their overlay

Motivation


- CEAP Sample: unit-level RUSLE2
- Parameter of interest: county-level RUSLE2
- SAE population-level covariates (soil and crop)
 - data quality of auxiliary variables
 - integrity of overlay operation
- Fitted SAE Model (Lyu, Berg and Hofmann, submitted)

$$log(Y_{pos}) = b_0 + 2.08 * logR + 0.48 * logK + 0.48 * logS + (1 | county)$$


logit(
$$P(Y_{obs} = 1)$$
) = $a_0 + 5.04 * logR + 0.38 * logS + 0.7 * is.soybean + 0.95 * is.sprwht + (1 | county)$


Cropland/Soil Data Layer

- Cropland data layer (CDL)
 - Annual data product for the contiguous United States
 - Geo-referenced crop-specific land cover data layer
- Soil data layer (SDL)
 - Soil Survey Geographic Data (SSURGO)
 - Soil component data on topology and erodibility
 - Available for the United
 States and the Territories

annielyu.com/#shiny

Flowchart of viscover.

viscover: an R package

Installation

devtools::install_github("XiaodanLyu/viscover")

Functions

- run the interactive tool: runTool()
- fetch data: GetCDLFile, GetCDLValue, GetSDLValue
- CDL color mapping: cdlpal

Data

CDL category codes: cdl.dbf

Conclusion

iNtr

- Accuracy locate issues in NRI data collection and computer programs
- * Timeliness more efficient table review, on schedule for release
- Comparability geographically hierarchical comparison

viscover

- Accuracy explore the data quality of covariates for small area models
- * Comparability visualize and integrate complex geospatial datasets
- Usability open source, freely available
- * Accessibility mouse events, customized graphic and tabular output

"A picture is worth a thousand words."

References

- 1. P. P. Biemer. Total survey error: Design, implementation, and evaluation. Public Opinion Quarterly, 74(5):817–848, 2010.
- 2. Rao J, Molina I. Small Area Estimation. John Wiley & Sons, 2015.
- 3. W. Chang, J. Cheng, J. Allaire, Y. Xie, and J. McPherson. shiny: Web Application Framework for R, 2018. URL https://CRAN.R-project.org/package=shiny.
- 4. M. Joblin, and W. Mauerer. "An Interactive Survey Application for Validating Social Network Analysis Techniques." *R Journa*l 8.1 (2016).
- U.S. Department of Agriculture. 2018. Summary Report: 2015 National Resources Inventory, Natural Resources Conservation Service, Washington, DC, and Center for Survey Statistics and Methodology, Iowa State University, Ames, Iowa.
- X. Lyu, E. J. Berg, and H. Hofmann. Empirical bayes small area prediction of sheet and rill
 erosion under a zero-inflated lognormal model. 2019+. Manuscript submitted for publication.

Discussion

- 1. Can our data tools be applicable or generally useful to your project?
- 2. How could such data tools be applied to reducing sampling errors?
- 3. What are appropriate outlets where we can publish such kind of applied work?
 - □ annielyu.com
 - □ http://bit.ly/itsew19