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Presentation outline

•Background

Clustering algorithms: GMM and DBSCAN

(Survey) measurement error

Measurement error & clustering 

•Our research

Testing the sensitivity of clustering results to 
measurement error- a simulation study 



•A process classifying observations into groups (i.e. 
clusters) such that similar ones belong to the same group 
and dissimilar to different groups 

•An unsupervised learning problem (unlabeled data/ no 
predefined classes) 

•Has a wide range of applications (e.g. marketing, insurance 
and banking- fraud detection, adaptive survey designs) 

Clustering / cluster analysis 



GMM and DBSCAN

Source: Izzo et al. (2016)

Gaussian Mixture Models (GMM) Density-based spatial clustering of 
applications with noise (DBSCAN)

Source: 
http://www.nehalemlabs.net/prototype/blog/2014/04/03/quick-
introduction-to-gaussian-mixture-models-with-python/

Source: Izzo et al. (2016)



(Survey) measurement error

No measurement error Random measurement error Systematic measurement error



• Simulate a 3-dimensional dataset from a mixture of three 
multivariate Gaussian distributions (N = 1,000)

• Introduce measurement error based on 24 conditions:

• Compare clustering results for ‘original’ data and datasets 
with error:

Number of clusters

Cluster similarity of (i) ‘raw’ clustering results and (ii) merged/ 
stable clusters  (adjusted Rand index)

Our analysis- simulation setup

Error type
1. Random
2. Systematic

Var’s with 
error
1. One
2. All (three)

Error rate
1. 0.2
2. 0.4

Magnitude
1. Low
2. Medium
3. High



Our analysis- visualization of the data

Simulated dataset (‘original data’) Dataset with random measurement error (1 var)Dataset with random measurement error (3 var)Dataset with systematic measurement error (1 var)Dataset with systematic measurement error (3 var)



GMM Results: components

• Number of clusters 

• Adjusted Rand index (similarity) 

Systematic errorRandom error



GMM Results: (merged) clusters

• Number of clusters 

• Adjusted Rand index 

Systematic errorRandom error



DBSCAN Results: all clusters 

• Number of clusters 

• Adjusted Rand index 

Systematic errorRandom error



DBSCAN Results: size of noise cluster

• Original noise cluster size: 32

Noise cluster size



•GMM is less sensitive to measurement error than 
DBSCAN

In particular when GMM components are merged into clusters

Only looking at stable DBSCAN clusters does not help

The noise cluster in DBSCAN does not capture measurement 
error

•Measurement error has very strong biasing effects when
It is systematic as opposed to random

It affects all (three) variables rather than only one 

The magnitude is high

 Error rate does not appear to matter much

Summary and conclusions 



1. Should we try other clustering algorithms and/or other 
techniques to extract and compare clusters? 

If so, which ones?

2. Should we also correct for measurement error in this 
paper (i.e. using latent variable modelling)?

3. Would a real-life data application be interesting?

Questions about next steps



Thank you! 

• Paulina Pankowska, p.k.p.pankowska@vu.nl 

•Daniel Oberski, d.l.oberski@uu.nl 
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