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Background

 The Longitudinal Employer Household Dynamics 
Program (LEHD) at the U.S. Census Bureau uses 
job-level administrative data to produce detailed 
quarterly statistics on employment and earnings

 Data is missing for many tabulation 
characteristics.  We complete the data using 
multiple imputation.

 To limit disclosure, we use multiplicative input 
data noise infusion

 We estimate the additional variability due to both 
imputation and noise infusion.
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QWI Measures

 We evaluate five major QWI indicators.

 Emp (M) – Number of jobs with positive earnings in 
the current quarter

 Beginning of Quarter Emp (B) – Jobs with positive 
earnings at the same establishment in the previous 
and current quarter

 Full Quarter Emp (F) – Jobs with positive earnings at 
the same establishment in the previous, current, and 
subsequent quarter

 Average Earnings (ZW_3) – Average Earnings of F jobs

 Payroll (W1) – Total earnings at all M jobs
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QWI Tabulations

 We evaluate total variability for the following 
tabulations (state*year*quarter is implied)

 Worker characteristics:

 Age group by gender (~5% missing)

 Race by ethnicity (~20% missing)

 Gender by education (~80% missing)

 We also interact each of the above tabulations 
with county by industry (NAICS sector) (<1% 
missing)
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QWI Tabulations (cont.)
 Although the LEHD program is national, to reduce the 

computational burden we produce total variability 
estimates for the following 12 states: AK, DC, DE, HI, KY, 
ND, NH, RI, SD, VT, WV, and WY

 The tabulations are very detailed with a large number 
of small cells.  For example, below is the cell size 
distribution for the measure F tabulated by  state, year, 
quarter, industry, county, gender, and education

Cell Size Number of Cells Distribution

1-2 627,027 19%

3-9 844,533 25%

10-99 1,334,266 40%

100-999 468,974 14%

1000+ 61,744 2%



Average monthly earnings for workers in Santa Clara County, CA in the 

Information Sector with a college degree 2007-2011, by gender
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Major Sources of Variability
 Unit Non-Response/Coverage Differences

 UI data is received and matched with the BLS’ QCEW data to create a 
unified list frame

 We approach the UI data as a large random sample from the 
integrated UI/QCEW list frame. The frame represents almost the entire 
population of jobs.

 Each quarter, UI employment is at least 90% (many states are much 
higher, 98% or more) of the total UI/QCEW employment.

 Weights are created so that the UI totals match the sum of state year 
quarter sector(private/not private) UI/QCEW employment.

 Item Non-Response
 Missing tabulation characteristics (firm and/or worker) are completed 

using multiple-imputation

 Disclosure Avoidance (Multiplicative Noise Infusion)
 Noise infusion factors are created for each establishment.  We never 

tabulate the actual reported value for release.



Total Variability Analysis

 We use the Rubin (1987) multiple imputation 
approach to estimate total variability

 Within Variance

 No sampling error, but we do have undercoverage

 Due to the relatively large ”sample”, the median 
FPC over all table cells is about 0.022.

 Between Variance

 Imputation of missing tabulation characteristics

 Noise infusion of input data
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Estimating the Variability due to 

Characteristic Imputation
 We create 𝑙 = 1,… , 𝐿 = 10 input datasets (implicates).  

For each implicate 𝑙 we take new draws from the 
posterior predictive distribution for all of the 
imputation models (age, gender, race, ethnicity, 
education, industry, and county) and recalculate the 
tables.
 Across implicates, every record with at least one imputed 

characteristic is at risk of being assigned to a different 
table cell

 The higher the variability in our imputation models and 
the higher the proportion of missing data, the more 
likely a given record will be allocated to more than one 
table cell



Table Cell Estimates and the Within 

Implicate Variance
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The Rubin average within-variance:
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Estimating the Variability due to 

Noise Infusion 

 We create an additional 𝑙 = 1,… , 𝐿 = 10 input 
datasets (implicates)

 For each implicate 𝑙 and establishment 𝑗, we 
draw a new noise infusion factor 𝛿𝑗

𝑙, holding 
constant the imputed characteristics at the 𝑙 = 1
values

 The fewer establishments and/or the more 
unequal the distribution of jobs across 
establishments in a table cell, the higher the 
variance
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Between Contribution to Total Variability

The between implicate variance due to imputation
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The between implicate variance due to noise infusion
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The Rubin total variance (weighted average of within and 
between variance components):
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Results



Median FPC Correction
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Confidence Interval Comparison

Total Variability (Median) B Gender Education

Confidence Interval

Cell Size Median Size sqrt(TV) Bottom Top

1-2 1 0.7 -3.7 5.7

3-9 5 1.8 1.3 8.7

10-99 26 4.2 18.5 33.5

100-999 212 15.3 184.3 239.7

+1000 1,739 59.4 1,630.2 1,847.8

Within Variability Only (Median) B Gender Education

Confidence Interval

Cell Size Median Size sqrt(WV) Bottom Top

1-2 1 0.2 -0.4 2.4

3-9 5 0.5 4.0 6.0

10-99 26 1.1 24.2 27.8

100-999 212 3.3 206.6 217.4

+1000 1,739 9.3 1,723.7 1,754.3



Conclusion

 Due to the large “sample” size the FPC is small, 
greatly reducing within implicate variability

 Without taking account of imputation and noise 
infusion the standard variability measure overstates 
the reliability of the data (notable for smaller cells)

 The total variability approach gives the user a more 
complete picture of the sources of error

 Especially important for large sample administrative 
data where the traditional sources of error are small

 Future – Missing reports and processing errors
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