
International Total Survey Error Workshop University of Bergamo, June 10-12, 2019

The Total Survey Error A Time Series and System Approach

Anders Wallgren & Britt Wallgren

ba.statistik@telia.com

Formerly of Statistics Sweden – Department for research and development

04

05

03

01

02

- All sample surveys for official statistics generate time series
- The users need times series
- We must estimate time series patterns: $\hat{T}_t + \hat{S}_t + \hat{E}_t$

First we do a sample survey:

 $\hat{Y} = \Sigma microdata \cdot w_i \quad \leftarrow \text{ errors? } \text{Standard error} = s(\hat{Y})$

Then we analyze time series based on that survey:

 $\hat{Y}_t = y_t = \hat{T}_t + \hat{S}_t + \hat{E}_t \leftarrow \text{errors?}$ Standard deviation: $s(\hat{E})$ The variable *t* is added.

Sampling and time series: Two paradigms, two theoretical areas

Errors/mistakes from the first sample survey phase creates errors during the second phase

Errors found during the second phase can reveal errors done during the first phase

 \Rightarrow Sample design and time series analysis must be integrated!

Interest and understanding of time series methods is very low

No integration of sample design and time series methods

Mistakes and misunderstandings regarding time series are common

Sampling errors dominate thinking

Lack of TSE-thinking, other errors are not observed/understood Three examples:

- 1. "Sample size is to small, can't publish monthly data"
- 2. "Panel design is good"
- 3. "Errors in the time variable, what is that?"

1. "Sample size is to small, can't publish monthly data"

"Instead we publish aggregate estimates for rolling three-month periods"

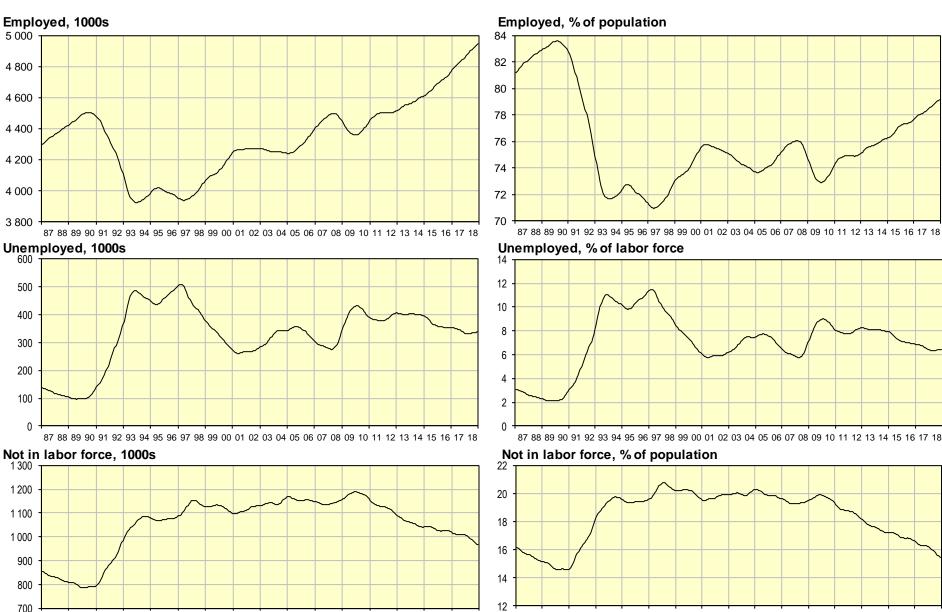
Not established times series analysis method Sampling errors dominate thinking Oct-Dec 2017 Nov-Jan 2018 Dec-Feb 2018 Jan-Mar 2018 Feb-Apr 2018 Mar-May 2018 Apr-Jun 2018 Jun-Aug 2018 Jun-Aug 2018 Jul-Sep 2018 Aug-Oct 2018 Sep-Nov 2018

Chart 3. Standard errors according to sampling theory for some estimates in the Swedish LFS.

Both sexes, 15-74 years	Point estimate December 2018	Standard error Monthly estimate	Standard error Quarterly estimate	Standard error Yearly estimate
Employed, 1000s	5098.6	19.4	11.4	9.1
Unemployed, 1000s	326.9	11.5	6.3	4.0
Not in labour force, 1000s	2059.5	19.4	11.1	8.9
Hours worked, millions/week	148.1	0.95	0.6	0.5

TSE (monthly estimates) > TSE (quarterly estimates) > TSE (yearly estimates)

We think that this ranking reflects the general attitude among sample survey statisticians. According to the time series paradigm this ranking is wrong

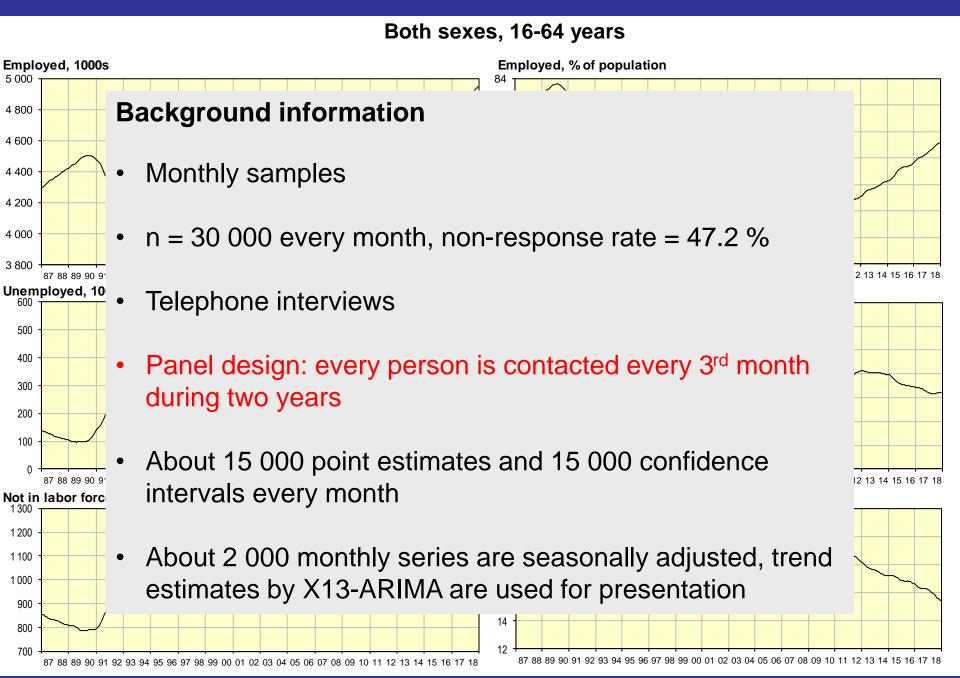

1. "Sample size is to small, can't publish monthly data"

- This old and deeply rooted practice indicates cross-section thinking: Standard errors of point estimates for *one* quarterly survey are compared with the standard errors of point estimates for *one* monthly survey.
 Compare instead *one* quarterly estimate with *three* monthly!
- But we don't need point estimates, we need estimates of patterns
 The quality of the estimated time series patterns are at least as good with monthly data as with quarterly.

120 monthly values, better than 40 quarterly values, better than 10 yearly values

The rolling three-months estimate, seasonally adjusted, is a 3-point moving average, a rough and primitive estimate of the trend component T_t.
 In e.g. X13-ARIMA there are better trend estimators.

The Swedish Labor Force Survey, estimated trends, monthly data



87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

Both sexes, 16-64 years

87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

The Swedish Labor Force Survey, estimated trends, monthly data

2. "Panel design is good"

Chart 8. Standard errors for some estimates in the Swedish LFS.

Both sexes, 15-74 years	Employed	Unemployed	Not in labour force	Hours worked
	1000s	1000s	1000s	millions/week
1. Standard error Monthly estimate	19.4	11.5	19.4	0.95
2. Standard error Monthly estimate – change previous month	27.5	16.2	27.4	1.35
3. Standard error Quarterly estimate	11.4	6.3	11.1	0.55
 Standard error Quarterly estimate – change previous quarter 	er 9.4	7.2	9.0	0.45

This is why people want to use a panel design

LFS has been optimized to have small standard errors for changes with previous quarter

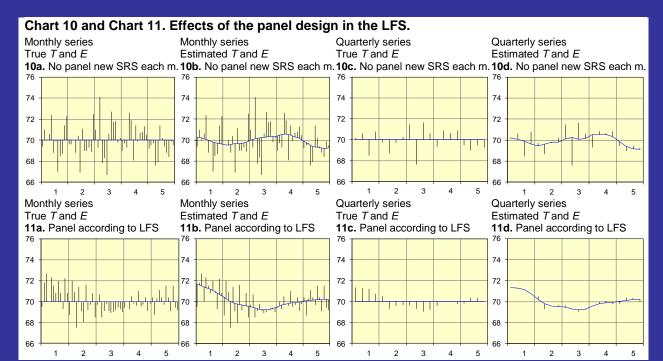
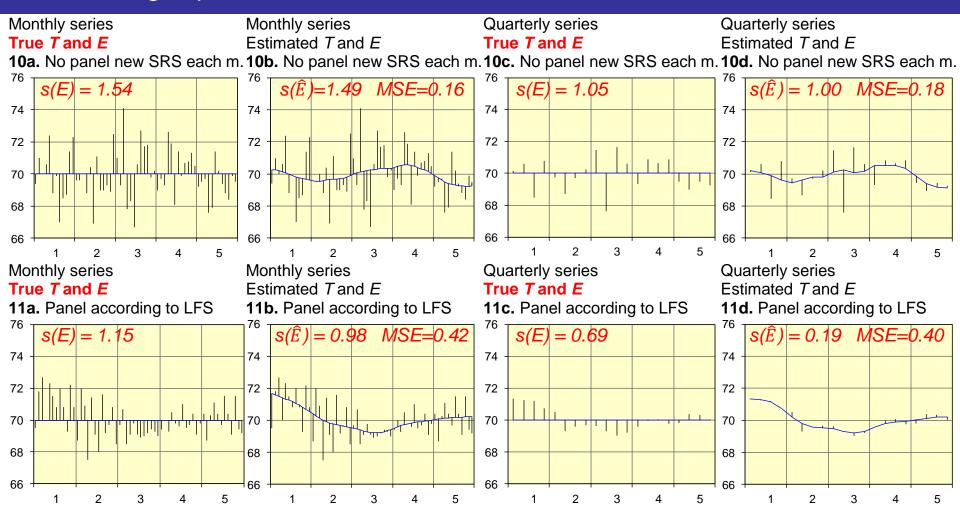

But what is this? How can $s(\hat{E})$ be smaller than the sampling standard error?

Chart 7. Standard errors for some estimates in the Swedish LFS compared with the residual component *Et*

		Monthly e	<u>stimates</u>	Quarterly estimates			
Both sexes, 15-74 years	Point estimate Dec 2018	Standard error due to sampling	Standard deviation (<i>E</i> t)	Standard error due to sampling	Standard deviation (<i>E</i> t)		
Employed, 1000s	5098.6	19.4	14.6	11.4	6.1		
Unemployed, 1000s	326.9	11.5	9.9	6.3	4.0		
Not in labour force, 1000s	2059.5	19.4	13.8	11.1	6.3		
Hours worked, millions/week	148.1	0.95	3.97	0.6	1.9		

2. "Panel design is good" A sampling experiment that compares panel designs with simple random sampling


- In all simulations, we have a population where 70 % are employed each month and quarter
- In Chart 10a we have 60 monthly values with new independent simple random samples (SRS) each month. In Chart 10c we have the corresponding 20 quarterly values
- In Chart 11a we have 60 monthly values according to the panel design used in the LFS. One out of eight panels is new every month. Each person in the population has the same employment status all months.

2. "Panel design is good"

A sampling experiment that compares panel designs with simple random sampling

Monthly trend estimates ≈ quarterly trend estimates SRS better than panel, MSE: SRS 0.16 – Panel 0.42 Quarterly panel: false accuracy, random errors are transformed into bias! TSE thinking important

2. "Panel design is good"

Quarterly panel: false accuracy, we publish this!

 $Var(E_t) = Var(u_t) + Var(w_t)$, where

Var (u_t) = variance of the estimator according to sampling theory, and

 $Var(w_t) = variance of other short-term disturbances$

In Chart 7 we have for the estimator of *Hours worked*:

 $Var(E_t) = Var(u_t) + Var(w_t) = 3.97^2 = 0.95^2 + 14.9 =$ 15.8 = 0.9 + 14.9as percent of $Var(E_t)$ we get:100 = 6 + 94which means that other short-term disturbances
than sampling errors is the main quality problem

We have earlier (1994) found similar problems with monthly business surveys:

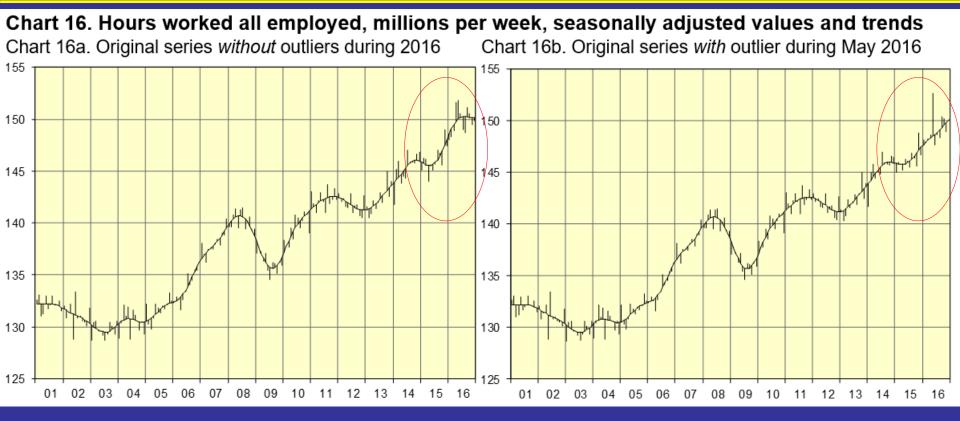
$Var(E_t)$	$) = V_{0}$	ar (u_{t}) + V	$ar(w_t)$	
100	=	4	+	96	Hours worked, steel industry
100	=	1	+	99	Hours worked, engineering industry
100	=	10	+	90	Hourly pay, steel industry
100	=	17	+	83	Hourly pay, engineering industry

Here, "months" are not calendar months. This creates errors in the time variable, a more serious problem than the sampling error of the estimates

Chart 17. The measurement periods originally used for the Swedish LFS for 2016

Year 2015 Year 2016 Year 2017													
Dec	Jan	Feb	Mars	April	May	June	July	Aug	Sep	Oct	Nov	Dec	Jan
1 T 49	1 F	1 M 5	1 T	1 F	1 S	10	1 F	1 M 31	1 T	1 L	1 T	1 T	1 S
20	2 L	2 T	2 0	2 L	2 M 18	2 T	2 L	2 T	2 F	2 S	20	2 F	2 M 1
2 U 3 T	3 S	30	2 U 3 T	3 S	3 T	2 F	3 S	30	3 L	3 M 40	3 T	2 I 3 L	3 T
4 F	4 M 1	4 T	4 F	4 M 14	40	4 L	4 M 27	4 T	4 S	4 T	4 F	4 S	4 0
5 L	5 T	5 F	5 L	5 T	5 T	5 S	5 T	5 F	5 M 36	50	5 L	5 M 49	4 0 5 T
6 S	60	6 L	6 S	60	6 F	6 M 23	60	6 L	6 T	6 T	6 S	6 T	6 F
7 M 50	7 T	7 S	7 M 10	7 T	7 L	7 T	7 T	7 S	70	7 F	7 M 45	70	7 L
8 T	8 F	8 M 6	8 T	8 F	8 S	80	8 F	8 M 32	8 T	8 L	8 T	8 T	8 S
90	9 L	9 T	90	9 L	9 M 19	9 T	9 L	9 T	9 F	9 S	90	9 F	9 M 2
10 T	10 S	10 0	10 T	10 S	10 T	10 F	10 S	10 0	10 L	10 M 41	10 T	10 L	10 T
10 T	11 M 2	10 0 11 T	10 F	10 J	11 0	10 T	11 M 28	10 U	10 L 11 S	10 M 41 11 T	10 F	10 L 11 S	11 0
12 L	12 T	11 F	12 L	12 T	11 U 12 T	12 S	12 T	12 F	11 J 12 M 37	12 0	11 F 12 L	11 J 12 M 50	11 U 12 T
12 L 13 S	13 0	12 F 13 L	13 S	13 0					13 T	12 U 13 T	13 S	12 M 50	12 T 13 F
13 J 14 M 51	13 U 14 T	14 S	13 5 14 M 11	13 U 14 T	11	weeks	out of	52	14 0	13 F	14 M 46	14 0	13 F 14 L
14 W 51 15 T	15 F	15 M 7	15 T	15 F	hala	aa ta ti	No mo	nthai	15 T	15 L	15 T	14 0 15 T	15 S
16 0	16 L	15 M 7 16 T	16 0	16 L	loiea	ig to t	wo mo	nuns.	16 F	16 S	16 0	16 F	16 M 3
10 0 17 T	17 S	17 0	10 0 17 T	17 S	21 %	5 of the	e interv	views	17 L	17 M 42	10 0 17 T	10 I 17 L	17 T
17 F	18 M 3	17 O	17 F	18 M 16					18 S	17 M 42 18 T	17 F	18 S	18 0
10 I 19 L	10 M 3	10 F	10 I 19 L	10 M 10 19 T	hav	ve errc	ors in ti	me	19 M 38	19 0	10 I 19 L	19 M 51	10 U
20 S	20 0	20 L	20 S	20 0	20 F	20 M 25	20 O	20 L	20 T	20 T	20 S	20 T	20 F
21 M 52	21 T	21 S	21 M 12	21 T	21 L	21 T	20 0 21 T	21 S	21 0	21 F	21 M 47	21 0	21 L
22 T	22 F	22 M 8	22 T	22 F	22 S	22 O	22 F	22 M 34	22 T	22 L	22 T	22 T	22 S
23 O	23 L	23 T	23 O	23 L	23 M 21	23 T	23 L	23 T	23 F	23 S	23 O	23 F	23 M 4
24 T	24 S	24 O	24 T	24 S	24 T	24 F	24 S	24 O	24 L	24 M 43	24 T	24 L	24 T
25 F	25 M 4	25 T	25 F	25 M 17	25 O	25 L	25 M 30	25 T	25 S	25 T	25 F	25 S	25 O
26 L	26 T	26 F	26 L	26 T	26 T	26 S	26 T	26 F	26 M 39	26 O	26 L	26 M 52	26 T
27 S	27 O	27 L	27 S	27 O	27 F	27 M 26	27 O	27 L	27 T	27 T	27 S	27 T	27 F
28 M 53	28 T	28 S	28 M 13	28 T	28 L	28 T	28 T	28 S	28 O	28 F	28 M 48	28 O	28 L
29 T	29 F	29 M 9	29 T	29 F	29 S	29 O	29 F	29 M 35	29 T	29 L	29 T	29 T	29 S
30 O	30 L		30 O	30 L	30 M 22	30 T	30 L	30 T	30 F	30 S	30 O	30 F	30 M 5
31 T	31 S		31 T		31 T		31 S	31 O		31 M 44		31 L	31 T

Chart 15. Hours worked all employed, millions per week, seasonally adjusted values and trends



In the LFS, "months" are not calendar months. Instead measurement periods of 4, 4, and 5 weeks are used.

The errors in the time variables make seasonal adjustments difficult.

 $s(\hat{E})$ measures the disturbing noise in the seasonally adjusted series.

Up to 2009, only Chart 15a was available for the users. During 2010 a method for correcting for moving measurement periods was introduced and Chart 15b became available.

The time series patterns that describe what is happening now, are extra important and errors here contribute to the TSE.

Chart 16a: "Growth has ceased" Chart 16b: "Growth is continuing" Automatic outlier identification and correction is a method that is used by many statistical institutes. Outliers are indicators of quality problems, to include an outlier does not solve the problem, it only hides the problem.

11 weeks out of 52 belong to two months: 21 % of the interviews have error in the time variable

(Chart 18. Original microdata											
			LFS	LFS		Hours						
	PIN	Week	"year"	"month"	Labour status	worked	Wi					
	19001	53	2015	12	Employed	42	442.2					
	19002	9	2016	3	Unemployed	null	421.0					

Person 19001 was employed during December 2015 and January 2016 Person 19002 was unemployed during February 2016 and March 2016 Split such interviews into two records in Chart 19

Calibration of weights to correct for errors in the time variable, new weight v_i

Chart 19. Microdata, corrected for errors in the time variable											
		Calendar	Calendar		Hours						
PIN	Week	year	month	Labour status	worked	W _i	days/week	V_i			
19001	53	2015	12	Employed	42	442.2	4/7	252.7			
19001	53	2016	1	Employed	42	442.2	3/7	189.5			
19002	9	2016	2	Unemployed	null	421.0	1/7	60.1			
19002	9	2016	3	Unemployed	null	421.0	6/7	360.9			

12

252.7

	40.0							-		Calendar	Calendar			1	
Chart	18. C	Drigin	al mic	rodat	a			PIN	Week	year	month	Wi	days/week	V _i	
		LFS	LFS			Hours		19001	53	2015	12	442.2	4/7	252.7	
PIN	Week	"year"	"month"	Labo	our status	worked	W,	19001	53	2016	1	442.2	3/7	189.5	
19001	53	2015	12	Employ		42	442.2	19002	9	2016	2	421.0	1/7	60.1	
19002	9	2016	3	Unempl		null	421.0	19002	9	2016	3	421.0	6/7	360.9	
19003	13	2016	3		bour force	null	423.6	19003	13	2016	3	423.6	4/7	242.1	
19004	17	2016	4	Employ		16	415.1	19003	13	2016	4	423.6	3/7	181.5	
19005	22	2016	6	Employ		29	465.3	19004 19004	17 17	2016 2016	4 5	415.1 415.1	6/7 1/7	355.8 59.3	
19006	26	2016	ĕ		bour force	null	434.0	19004	22	2016	5	465.3	2/7	132.9	
19007	35	2016	9	Employ		35	429.5	19005	22	2016	6	465.3	5/7	332.4	
19008	39	2016	9		bour force	null	423.6	19006	26	2016	6	434.0	4/7	248.0	
19009	44	2016	11		bour force	null	415.9	19006	26	2016	7	434.0	3/7	186.0	
19010	48	2016	12	Employ		6	433.8	19007	35	2016	8	429.5	3/7	184.1	
19011	52	2016	12		bour force	null	411.8	19007	35	2016	9	429.5	4/7	245.4	
19011	02	2010	12	Notinia		nun	TTI.	19008 19008	39 39	2016 2016	9 10	423.6 423.6	5/7 2/7	302.6 121.0	
Chart	20 5	Sampl	ina we	iahts	by yea	r and n	nonth	19008	44	2016	10	423.6	2/7	59.4	
		•	•	<u> </u>				19009	44	2010	11	415.9	6/7	356.5	
Based		-			rected r			19010	48	2016	11	433.8	3/7	185.9	
Month"	"2015	5" "20	16" M	onth	2015	2016	2017	19010	48	2016	12	433.8	4/7	247.9	
3		* 84	4.6	1	*	189.5	58.8	19011	52	2016	12	411.8	6/7	353.0	
4		* 41	5.1	2	*	60.1	*	19011	52	2017	1	411.8	1/7	58.8	
6		* 89	9.3	3	*	602.9	*								
9			3.1	4	*	537.3	*								
11			5.9	5	*	192.2	*								
12	442.		5.6	6	*	580.4	*	Persons by year and month:							
12	442.	2 04	5.0	7	*	186.0	*								
					*		*	Errors are corrected for 21 %							
				8		184.1	_	of the interviews							
				9	*	548.0	×								
				10	*	180.4	*								
				11	*	542.4	*								

*

600.9

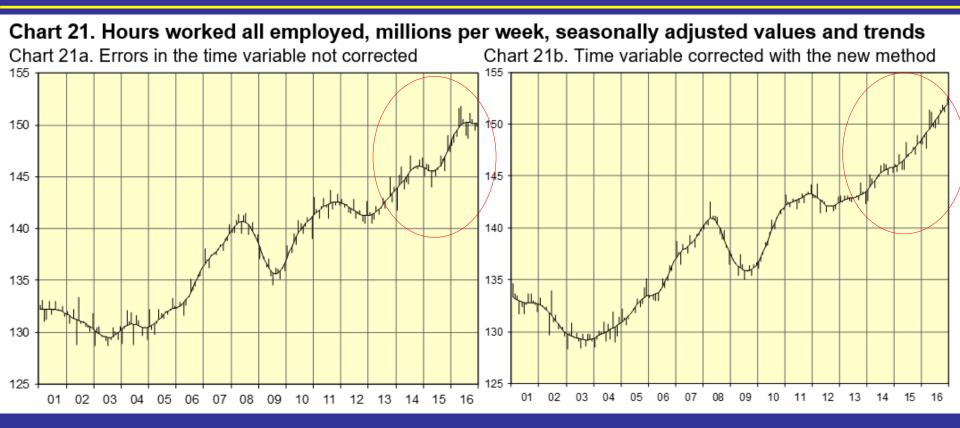


Chart 21a. Errors in the time variable \Rightarrow Chart 21b. Corrected time variable \Rightarrow

Seasonal adjustment failed \Rightarrow Errors in \hat{T}

All outliers vanished Estimate \hat{T} has high quality

Do people agree:

1. "Sample size is to small, can't publish monthly data" Yes/No

Yes/No

Yes/No

- 2. "Panel design is good"
- 3. "Errors in the time variable, do we have that?"