Policing in Chicago

Max Kapustin

Terrence Neumann

Jens Ludwig

kapustin@uchicago.edu

tdneumann@uchicago.edu

jludwig@uchicago.edu

University of Chicago Crime Lab

CPD's response to 2016

- Strategic Decision Support Centers (SDSCs), collaboration between:
 - Chicago Police Department (CPD)
 - Mayor's Office
 - Chief Sean Malinowski (LAPD)
 - University of Chicago Crime Lab

CPD's response to 2016

- Strategic Decision Support Centers (SDSCs), collaboration between:
 - Chicago Police Department (CPD)
 - Mayor's Office
 - Chief Sean Malinowski (LAPD)
 - University of Chicago Crime Lab
- What do the SDSCs do?
 - Consider what most experts think are policing best practices

Policing best practices

High-Risk Places

High-Risk Persons

Community Engagement

CPD's implementation of policing best practices

Status quo

SDSC

- High-Risk Places
- Custom mapping software
- Static deployment plans

High-Risk
PersonsLimited checks of
probationers, parolees;
open warrants

Community• Chicago Alternative PolicingEngagementStrategy (CAPS)

CPD's implementation of policing best practices

Status quo

High-Risk Places

- Custom mapping software
- Static deployment plans

High-Risk
 Limited checks of probationers, parolees; open warrants

Community• Chicago Alternative PolicingEngagementStrategy (CAPS)

SDSC

- Centralized crime mapping (analyst)
- Dynamic deployment plans

SDSC: Recommendations

Legend:			
Foot Patrol			
• Archer-31 / Riv	er-Halsted		
Bike Patrol	<u> </u>		
Pershing-Pope/	/Western-Sac		
High Vis Patrol			
• 43-47 / Wolcott-Ashland			
• 51-55 / Hoyne-Winchester			
• E1 EE / Achland Loomic			

OL I

ED 4

51-55 / Ashland-Loomis
51-55 / Racine-Carpenter

CPD's implementation of policing best practices

Status quo

High-Risk Places

- Custom mapping software
- Static deployment plans

High-RiskPersonsLimited checks of probationers, parolees; open warrants

SDSC

- Centralized crime mapping (analyst)
- Dynamic deployment plans
- Identifying high-risk persons in briefings
- Information packets for warrant arrests, curfew checks

Community• Chicago Alternative PolicingEngagementStrategy (CAPS)

ACTIVE WARRANT – CW0046401

?

JOHN P DOE IR# LKA: SEX/RACE/AGE: M/1/28 HT/WT: 5'04"/180 Issued: 26 June 17

Info: AGG BATT UUW DOC 16 119070301 OTX 312 745 5208

CPD's implementation of policing best practices

Status quo

High-Risk Places

- Custom mapping software
- Static deployment plans

High-RiskPersonsLimited checks of probationers, parolees; open warrants

SDSC

- Centralized crime mapping (analyst)
- Dynamic deployment plans
- Identifying high-risk persons in briefings
- Information packets for warrant arrests, curfew checks

Community Engagement

- Chicago Alternative Policing Strategy (CAPS)
- Measuring positive community interactions

• Feb 2017: Dist. 7 and 11 (23% of homicides)

- Feb 2017: Dist. 7 and 11 (23% of homicides)
- Mar 2017: Dist. 6, 9, 10, 15 (30% of homicides)

- Feb 2017: Dist. 7 and 11 (23% of homicides)
- Mar 2017: Dist. 6, 9, 10, 15 (30% of homicides)
- RCT = out of the question

- Feb 2017: Dist. 7 and 11 (23% of homicides)
- Mar 2017: Dist. 6, 9, 10, 15 (30% of homicides)
- RCT = out of the question
- Too few districts for a regression discontinuity

- Feb 2017: Dist. 7 and 11 (23% of homicides)
- Mar 2017: Dist. 6, 9, 10, 15 (30% of homicides)
- RCT = out of the question
- Too few districts for a regression discontinuity
- Synthetic controls for place-based interventions
 - Powerful tool, but saw signs of misleading results in our setting
 - We propose a modified version
 - Variable results across districts sheds light on why police matter?

Intuition

• Method: Choose weights (ω_j^*) that minimize the distance between the treated and donor units in the pre-period $(t \le T)$:

$$\arg\min_{\omega} \sum_{t=1}^{T} \left(Y_{1t} - \sum_{j=2}^{J} \omega_j Y_{jt} \right)^2$$

• Key assumption: The relationship between f(x) and the donor units, represented by the weights, remains stable over time.

Avoiding pitfalls

- To reduce over-fitting, make it harder to assign weight to noise donors
 - How do we do this if we don't know which ones are the noise donors?
 - By making it harder to assign weight to *any* donor
 - Data will prioritize (signal) donors that track treated unit more closely, deprioritize (noise) donors that do not

Avoiding pitfalls

- To reduce over-fitting, make it harder to assign weight to noise donors
 - How do we do this if we don't know which ones are the noise donors?
 - By making it harder to assign weight to *any* donor
 - Data will prioritize (signal) donors that track treated unit more closely, deprioritize (noise) donors that do not
- Abadie, Diamond, Hainmueller (ADH 2010, 2015): fixed constraints
 - Rigid constraints: $\omega \ge 0$, $\sum \omega = 1$

Avoiding pitfalls

- To reduce over-fitting, make it harder to assign weight to noise donors
 - How do we do this if we don't know which ones are the noise donors?
 - By making it harder to assign weight to *any* donor
 - Data will prioritize (signal) donors that track treated unit more closely, de-prioritize (noise) donors that do not
- Abadie, Diamond, Hainmueller (ADH 2010, 2015): fixed constraints
 - Rigid constraints: $\omega \ge 0$, $\sum \omega = 1$
- Doudchenko & Imbens (DI 2017): data-driven penalty on control "complexity"
 - Regularized regression: fewer weights, smaller weights

Synthetic Controls: SDSC Application

Shootings in District 7

- Focus on District 7
- Weights: ADH (2010, 2015)
 - $\omega \ge 0$, $\sum \omega = 1$

$$\underset{\boldsymbol{\omega}}{\operatorname{arg\,min}} \sum_{t=1}^{T_0} \left(Y_{1,t} - \sum_{j=2}^{J+1} \omega_j Y_{j,t} \right)^2$$

• Donors: 16 non-SDSC districts

Shooting incidents per month in District 7

Expanding the donor pool

- Crime data can be aggregated to any geographic unit, not just districts
- What if we use **beats** within the 16 districts as our donor pool?
 - The 16 districts may look different...
 - ...but some of their beats do not.
- To account for difference in size between treated district and donor beats, express outcome as rate per capita

Shooting Incident Rate per Capita by Beat, 2016

DI regularized regression: really good fit

DI regularized regression: really good fit

Inference: placebo-in-place

- Assess estimate's significance by comparing to null (placebo) distribution of treatment effects
- Placebo-in-place
 - Estimate synthetic counterpart for each control district
 - Compare observed test statistic to placebo distribution
- But there are only 16 non-SDSC districts
 - Up to 16 p-values = sparse placebo distribution

Inference: placebo-in-place

- Workaround: bootstrapped control districts
 - For each control district, resample N beats with replacement K times
 - K resampled districts are perturbed versions of original control district
 - Similar to method used by Robbins, Saunders, and Kilmer (2017)

Shooting incidents per 100,000

	Shooting Incident Rate			
			Adjusted p-value	
District	Estimate	p-value	(Holm)	
6	-4.4%	0.874	1.000	
7	-34.0%	0.000	0.000	
9	-15.1%	0.561	1.000	
10	16.7%	0.215	1.000	
11	-11.7%	0.350	1.000	
15	-9.7%	0.346	1.000	

Homicide victims per 100,000

	Homicide Rate			
			Adjusted p-value	
District	Estimate	p-value	(Holm)	
6	-32.0%	0.077	0.366	
7	-62.4%	0.020	0.122	
9	-26.9%	0.329	0.659	
10	-9.0%	0.622	0.659	
11	-51.5%	0.130	0.390	
15	-34.9%	0.073	0.366	

Mechanisms: District 7

What's behind the improvement in District 7?

- Increased officer presence? No
- Increased arrests? No
- Improved tactics (people, places, police-community relations)?

Gun arrest rate

Actual (Black) vs Synthetic for District 07

Warrant arrest rate (tactical units)

Positive community interactions (PCIs)

What have we learned?

• Implementation as intervention

- Echoes literature on management practices for firms (Bloom and van Reenen 2007; Syverson 2011)
- Under-appreciated in economics of crime (and public economics generally?)
- Very cost-effective if it actually works

