At warp speed: Statistics and COVID-19 vaccine development David Benkeser, PhD MPH **Emory University Department of Biostatistics and Bioinformatics**

Ø @biosbenk
 Ø bit.ly/warpspeedstats

MISSION: Deliver 300 million doses of safe and effective vaccine by 1 January 2021.

Phase | Clinical Trials

Phase III Clinical Trials

Distribution

COVID-19 Prevention Network

CoVPN was formed by NIAID to establish a unified clinical trial network for evaluating vaccines and monoclonal antibodies.

- pooling of resources across four existing trials networks
- clinical sites, laboratories, recruitment specialists, statisticians, ...

Statisticians advise on:

- primary trial design and analysis
- sequential efficacy monitoring
- **safety** monitoring
- DSMB/FDA comments
- immune correlates

Design and analysis

AstraZeneca design

Trial protocols have (unusually) been made publicly available.

• Moderna, Pfizer, AZ, Janssen

All Phase III trials are largely similar to this:

• vaccine, immune response, phone call, clinic visit

What is primary hypothesis test?

Vaccine efficacy, VE, is the **percent reduction in relative risk** comparing vaccine to placebo.

$${
m VE} = 1 - rac{ ext{``risk'' in vaccine}}{ ext{``risk'' in placebo}}$$

- "risk" of what? See next slides.
- "risk" quantified by hazard, cumulative incidence, incidence rate, ...
 o in rare event setting, all similar

FDA guidance (pg. 14) stipulates:

- a point estimate of VE for the primary endpoint of at least 50% $\ensuremath{\text{and}}$
- lower bound of an appropriately adjusted confidence interval >30%.
- overall type I error control for one-sided test at 2.5%.

Figure 1. Clinical endpoint relationships, definitions, and example sampling scheme for diagnosed COVID-19 cases.

Clinical Endpoint	Definition
SARS-CoV-2 infection	Positive RNA PCR result or SARS-CoV-2 seroconversion*, whichever occurs first
COVID-19 (symptomatic infection)	Meeting a protocol-specified list of COVID-19 symptoms with virologic confirmation of SARS-CoV-2 infection (symptom triggered)
Asymptomatic infection	SARS-CoV-2 seroconversion* without prior diagnosis of the COVID-19 endpointt
Severe COVID-19	COVID-19 endpoint with at least 1 protocol-specified severe disease event
Nonsevere COVID-19	COVID-19 endpoint with 0 protocol-specified severe disease events
BOD	Composite endpoint score of 0 for no COVID-19, 1 for nonsevere COVID-19, and 2 for severe COVID-19

SARS-CoV-2 infection

- + relevant to stemming spread, many infections will be observed
- - clinically relevant? measured coarsely in time; many false positives

COVID

- + more clinically relevant, reasonable number of cases expected
- - clinically relevant if symptoms are mild?

Severe COVID

- + most clinically relevant, a-priori highest expected efficacy
- - very few cases expected to be observed, longer evaluation needed

Burden of disease (BOD)

- + more clinically relevant than COVID
- + lower power for vaccines of questionable benefit
- + power at least as high as COVID for likely vaccine profiles
- best way to assign burden score? treating ordinal as continuous ¹

Assumed VE, %		Statistical Power, %			
COVID-19	Severe COVID-19	Severe COVID-19	COVID-19	BOD	
60	0	0	91	47	
60	30	2	91	70	
60	60	27	91	89	
60	70	50	91	93	
60	80	76	91	96	
60	90	95	91	98	

FDA guidance (pg. 13) states either COVID or SARS-CoV-2 infection is an acceptable primary endpoint.

• OWS guidance to companies has been that **infection alone** is **not acceptable** as primary endpoint.

FDA guidance states companies, "should consider **powering efficacy trials** for formal hypothesis testing on a **severe COVID endpoint** [or] evaluate as a **secondary endpoint**."

• Only Janssen so far is powering for severe COVID as primary.

Reported results

Results

Company	VE COVID	Cases	VE Severe	Cases
	(95% CI)	(vax:placebo)	(95% CI)	(vax:placebo)
Pfizer/BioNTech	94.6	170	88.9	10
	(90.0, 97.9)	(8:162)	(19.8, 99.7)	(1:9)
Moderna	94.1	196	100.0	30
	(89.1, 97.0)	(11:185)	(86.9, 100.0)	(0:30)
Oxford/ AstraZeneca (low)	90.0 (63.9, 97.8)	33 (3:30)	100.0 (??.?, ??.?)	(0:??) ??
Oxford/	61.9	98	100.0	??
AstraZeneca (full)	(40.0, 76.5)	(27:71)	(??.?, ??.?)	(0:??)
Sputnik	91.7 (77.7, 97.4)	20 (4:16)	????? (????, ????)	(O:55) 55

VE COVID reported in press releases. CI roughly computed based on case splits.

Vaccine correlates

Correlates of risk/protection

Two, interrelated goals of correlates analysis are to

- identify/validate possible surrogate endpoints;
- understand protective mechanisms of vaccines.

If an **immune correlate** is established to **reliably predict vaccine efficacy**, then subsequent efficacy trials may use the CoP as the **primary endpoint**.

Accelerates approval of

- existing vaccines in different populations (e.g., children);
- new vaccines in the same class.

Correlates of risk/protection

Two levels of correlates analysis*:

Correlates of risk:

- Correlation of immune response in vaccine recipients with outcome
- Risk prediction
- Evaluates associative parameters

Correlates of protection

- Evaluate immune response's ability to predict vaccine efficacy
- Evaluates causal parameters

Correlates of risk

Pseudo Neutralizing AbTiter

- Risk given immune response + baseline covariate adjustment
- E.g., Cox model

 Machine learning prediction using different sets of immune responses*.

Correlates of protection

Effect modifiers of VE

- How/does VE vary across subgroups defined by immune response?
- E.g., Juraska et al (2020)

Mediators of VE

- What percentage of VE is attributable to immune response?
- E.g., Cowling et al (2019)

Stochastic interventional VE

- How/would shifting the immune response distribution impact VE?
- Hejazi et al (2020)

Measuring correlates

Running assays on >30k samples is expensive and statistically unnecessary.

Instead we use a **case-cohort design** (Prentice, 1986) to **measure immune responses** in

- a stratified random subcohort (~1600 individuals)
- all SARS-CoV-2 endpoints

Statistical challenges

Estimation in two-phase designs

- Individuals who contract COVID may differ from other participants.
- Two-phase design over-samples these individuals.
- Augmented/inverse weighting approaches to **account for differences**.

Low case numbers due to highly effective vaccines

- Power for CoP analysis driven by vaccine breakthroughs.
- There were only 11 breakthroughs in Moderna!
- Need to be judicious in which analyses are performed.
- Ultimately, establishment of correlate will need to additionally draw from other sources of data.

Transparency and reproducibility

CoVPN statisticians are committed to open science.

An in-progress, version-controlled SAP is available for review.

An **open-source R package** is being developed to implement methods involved in the SAP.

- Reproducible reports using R Markdown
- Vignettes including analysis of simulated data

Release of package and first correlates reports expected in early 2021.

Concluding thoughts

Can we trust the vaccine development process?

• Unequivocally, yes. Safety of vaccines is aggressively monitored.

Efficacy results thus far are overwhelmingly positive.

• I am still in shock.

The story is not (close to) over. There is still much to do and learn!

- Community outreach/education to increase uptake
- Durability of vaccines
- Efficacy against infection/transmissibility
- Designs when placebo controls are not possible/ethical

• ...

Amazing statisticians

Leadership

- Dean Follmann (NIAID)
- Yonghong Gao (BARDA)
- Peter Gilbert (FHCRC, UW)

NIAID

- Martha Nason
- Mike Fay
- NIAID Biostatistics

CoVPN

- Alex Luedtke (UW)
- Marco Carone (UW)
- Iván Díaz (Weill-Cornell)
- Nima Hejazi (Berkeley)
- many others!

Fred Hutch

- Holly Janes
- Youyi Fong
- Yunda Huang
- Michal Juraska
- Ying Huang
- Ollivier Hyrien
- many others!