

Host Genetics and COVID-19

Priya Duggal, PhD, MPH Johns Hopkins Bloomberg School of Public Health February 4, 2021 Why consider genetics in the study of infectious disease?

If we can understand why people have different outcomes---we will better understand the immune response and eventually exploit this understanding for therapeutics and vaccines.

Our goals...are still to better understand disease so we can prevent and treat.

Infectious Disease: A complex trait? Infectious Disease is a perfect example of a complex trait

- Environmental **Exposure**: Exposure to a pathogen is critical.
- Redundancy and Complexity of the immune system suggest **multiple genes** may be involved in immune response.
- The **pathogen** (virus, bacteria, parasite) may also have **genetic factors** that are important.

Things we look for to see if genetics might be playing a role...

- Disease Heterogeneity
 - Not explained by other risk factors (sex, age, comorbidities)
- Familial aggregation
 - Hard to assess with infectious diseases because of transmission
- Pathogen Dose and Environment not major players

3. Controlling Dose/Pathogen

- We learn from our mistakes...
- 1926, Lubeck Germany
- 249 babies injected with the same live dose of virulent M. tuberculosis instead of BCG.
- Babies too young to have significant prior exposure to mycobacteria, and not previously vaccinated to BCG.
- All got the same strain, same dose.

76 babies died, 173 babies survived

Driven by 2 main questions

Do you get infected?

Do you get disease?

What makes infectious diseases different?

EXPOSURE

Epidemiology and COVID-19

Typical Presentations of COVID-19 for a disease that doesn't seem so typical...

Asymptomatic

Mild Infections

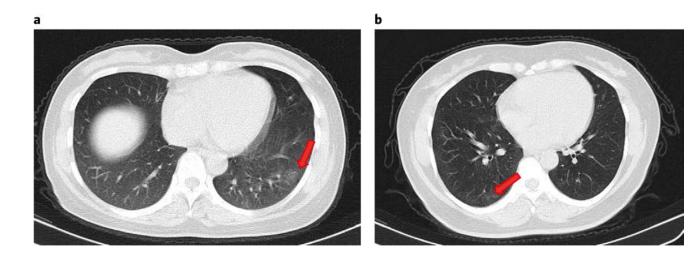
Hospitalized Infections. Disease progression with ICU monitoring and multiple organ manifestations

Multi-inflammatory Syndrome Children and Adults

Post Acute Symptoms "Long Haulers"

A LOT OF HETEROGENEITY

Asymptomatics & Mild Infections


- Asymptomatic individuals have longer duration of viral shedding
- Asymptomatic individuals have weaker immune response
- Some asymptomatic individuals have organ involvement but with no symptoms (see lungs)
- Mild infections report fatigue, shortness of breath 3 months post infection
- No free pass. Infection across the severity spectrum associated with organ involvement and potentially long term sequelae.

Check for update

Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections

Quan-Xin Long^{1,8}, Xiao-Jun Tang^{2,8}, Qiu-Lin Shi^{2,8}, Qin Li^{3,8}, Hai-Jun Deng^{1,8}, Jun Yuan¹, Jie-Li Hu¹, Wei Xu², Yong Zhang², Fa-Jin Lv⁴, Kun Su³, Fan Zhang⁵, Jiang Gong⁵, Bo Wu⁶, Xia-Mao Liu⁷, Jin-Jing Li⁷, Jing-Fu Qiu², Juan Chen¹ and Ai-Long Huang¹

Risk Factors for Severe Disease

And yet...

Older people (even 102 years of age) recover

Younger people require mechanical ventilation and even die with no comorbidities.

Race appears to be a risk factor—but as a social risk factor *not biologic*

Viral genetics does not seem to play a role in severity of disease, yet.

So is there a place for host genetics?

Do you get infected (susceptibility)?

- This requires detailed information on the population under study
- We need to know the non-infected were exposed, and yet still did not get infected

Study Design

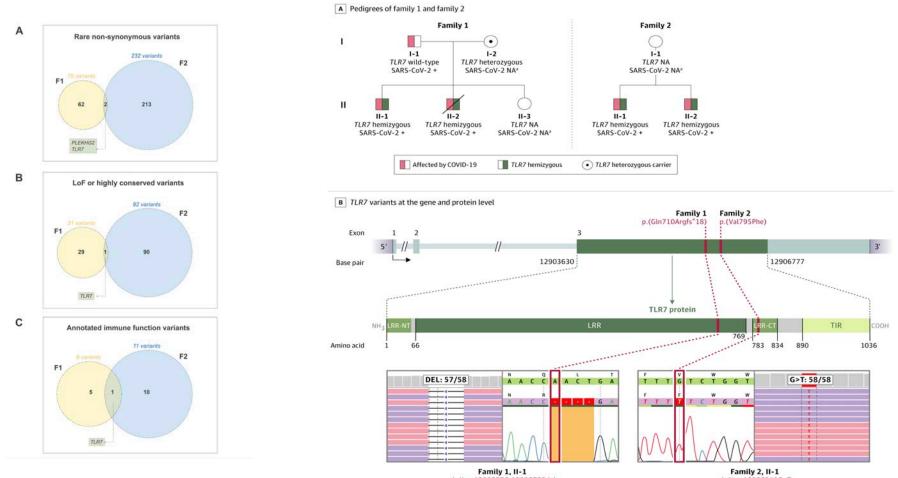
- Focus is typically on <u>highly exposed</u> individuals where you can document or infer that individuals were exposed
 - Health Care Workers/First Responders
 - Household members of known cases
 - Intensely followed cohorts (like withSTD/HIV high risk individuals)

Do you get disease (severity)?

• This is about the *heterogeneity* in disease.

Study Design

- We select cases and controls from among individuals who ALL have the infection
 - asymptomatic to severe/death
 - sample on distribution or extremes
- Otherwise, you are comparing a severe case to someone who may have never had the opportunity to become a severe case.


Types of suitable genetic studies based on underlying hypothesis..

- Rare Disease
 - Family based or multiple affecteds with rare outcomes and exome/WGS
- Common Disease
 - population based GWAS or exome sequencing

From: Presence of Genetic Variants Among Young Men With Severe COVID-19

JAMA. 2020;324(7):663-673. doi:10.1001/jama.2020.13719

Identification of TLR7 Variants in 4 Patients From 2 Families With Severe Coronavirus Disease 2019 (COVID-19) Patients II-1 and II-2 from family 1 lived in separate households, patients II-1 and II-2 from family 2 were housed together. Circles represent female family members; squares, males. A slash symbol represents a deceased individual. Panel B shows the TLR7 variants in each family at the gene and protein level in a schematic representation. The TLR7 protein structure is shown with leucine-rich repeat region (LRR), N- and C-termini (LRR-NT, LRR-CT) and the toll-interleukin receptor (TIR) homology domain. The exon-intron structure depicts the coding exon 3 of TLR7 with the identified variants by exome sequencing and Sanger sequencing validation as shown in the highlighted sections below. Red boxes depict positions of the variants ChrX(GRCh37):g.12905756_12905759del and ChrX(GRCh37):g.12906010G>T). NA indicates not assessed.

RESEARCH ARTICLE

Cite as: Q. Zhang et al., Scienc 10.1126/science.abd4570 (2020

Inborn errors of type I IFN immunity in patients with life-threatening COVID-19

Qian Zhang', Paul Bastard^{2.3*}, Zhiyong Liu'*, Jérémie Le Pen**, Marcela Moncada-Velez'*, Jie Chen'*, Masato Ogishi1*, Ira K. D. Sabli5*, Stephanie Hodeib5*, Cecilia Korol2*, Jérémie Rosain2.3*, Kaya Bilguvar6*, Junqiang Ye7*, Alexandre Bolze8*, Benedetta Bigio1*, Rui Yang1*, Andrés Augusto Arias1.9.10*, Qinhua Zhou1*, Yu Zhang^{11,12*}, Fanny Onodi¹³, Sarantis Korniotis¹³, Léa Karpf¹³, Quentin Philippot^{2,3}, Marwa Chbihi^{2,3}, Lucie Bonnet-Madin14, Karim Dorgham13, Nikaïa Smith16, William M. Schneider4, Brandon S. Razooky4, Hans-Heinrich Hoffmann⁴, Eleftherios Michailidis⁴, Leen Moens¹⁷, Ji Eun Han¹, Lazaro Lorenzo^{2,3}, Lucy Bizien^{2,3}, Philip Meade¹⁸, Anna-Lena Neehus^{2,3}, Aileen Camille Ugurbil¹, Aurélien Corneau¹⁹, Gaspard Kerner^{2,3}, Peng Zhang¹, Franck Rapaport¹, Yoann Seeleuthner^{2,3}, Jeremy Manry^{2,3}, Cecile Masson²⁰, Yohann Schmitt²⁰, Agatha Schlüter²¹, Tom Le Voyer^{2,3}, Taushif Khan²², Juan Li¹, Jacques Fellay^{23,24,25}, Lucie Roussel²⁶, Mohammad Shahrooei^{27,25}, Mohammed F. Alosaimi²⁹, Davood Mansouri^{50,31,32}, Haya Al-Saud³³, Fahd Al-Mulla³⁴, Feras Almourfi³³, Saleh Zaid Al-Muhsen³³, Fahad Alsohime²⁹, Saeed Al Turki^{36,37}, Rana Hasanato²⁹, Diederik van de Beek³⁸, Andrea Biondi³⁹, Laura Rachele Bettini³⁹, Mariella D'Angio³⁹, Paolo Bonfanti⁴⁰, Luisa Imberti⁴¹, Alessandra Sottini⁴¹, Simone Paghera⁴¹, Eugenia Quiros-Roldan⁴², Camillo Rossi⁴³, Andrew J. Oler⁴⁴, Miranda F. Tompkins⁴⁵, Camille Alba⁴⁵, Isabelle Vandernoot⁴⁶, Jean-Christophe Goffard⁴⁷, Guillaume Smits⁴⁶, Isabelle Migeotte⁴⁸, Filomeen Haerynck⁴⁰, Pere Soler-Palacin⁵⁰, Andrea Martin-Nalda⁵⁰, Roger Colobran⁵¹, Pierre-Emmanuel Morange⁵², Sevgi Keles⁵³, Fatma Çölkesen⁵⁴, Tayfun Ozcelik⁵³, Kadriye Kart Yasar⁵⁶, Sevtap Senoglu⁵⁶, Şemsi Nur Karabela⁵⁶, Carlos Rodríguez Gallego^{57,58}, Giuseppe Novelli⁵⁹, Sami Hraiech⁶⁰, Yacine Tandjaoui-Lambiotte^{61,62}, Xavier Duval^{63,64}, Cédric Laouénan^{63,64,65}, COVID-STORM Clinicians⁺, COVID Clinicians+, Imagine COVID Group+, French COVID Cohort Study Group+, CoV-Contact Cohort+, Amsterdam UMC Covid-19 Biobank[†], COVID Human Genetic Effort[†], NIAID-USUHS/TAGC COVID Immunity Group[†], Andrew L. Snow⁶⁶, Clifton L. Dalgard^{45,67}, Joshua Milner⁶⁸, Donald C. Vinh²⁶, Trine H. Mogensen^{69,70}, Nico Marr^{22,71}, András N. Spaan^{1,72}, Bertrand Boisson^{1,2,3}, Stéphanie Boisson-Dupuis^{1,2,3}, Jacinta Bustamante^{1,2,3,73}, Anne Puel^{1,2,3}, Michael Ciancanelli^{1,74}, Isabelle Meyts^{17,75}, Tom Maniatis^{7,76}, Vassili Soumelis^{13,77}, Ali Amara¹⁴, Michel Nussenzweig^{78,79}, Adolfo García-Sastre^{18,80,81,82}, Florian Krammer¹⁸, Aurora Pujol²¹, Darragh Duffy¹⁶, Richard Lifton^{83,84,85}⁺, Shen-Ying Zhang^{1,2,3}⁺, Guy Gorochov¹⁵⁺, Vivien Béziat^{1,2,3}⁺, Emmanuelle Jouanguy^{1,2,3}⁺, Vanessa Sancho-Shimizu⁵[‡], Charles M. Rice⁴[‡], Laurent Abel^{1,2,3}[‡], Luigi D. Notarangelo^{11,12}[§], Aurélie Cobat^{1,2,3}[§] Helen C. Su^{11,12}§, Jean-Laurent Casanova^{1,2,3,79,86}§

Testing the hypothesis that severe COVID-19 maybe due to monogenic inborn errors of immunity to SARS_CoV-2 with complete/incomplete penetrance

- Enrolled 659 Patients (74.5% men), different ancestries between the ages of 1 month-99 years (median 52 years), plus 534 COVID-19 mild/asymptomatic controls.
- Sequenced their whole genome n=364 or exome n=295
- Hyp = variants at 13 loci (immune related and previously implicated in influenza severity) may be responsible for outcome.
- Identified 4 unrelated patients with LOF allelic variants of IRF7 or IFNAR1. Further tested overexpression of these genes and identified 8 genes with deleterious mutations
- None of the cases carried the same LOF, but a LOF in the pathway of genes.
- Functional evidence to support this pathway.

Genome Wide Association Studies and COVID-19

- Ellinghaus, NEJM
- Baillie, Nature
- 23&Me, under review
 - https://www.medrxiv.org/content/10.1101/2020.09.04.20188318v1.full.pdf
- Ancestry.com, under review
 - https://www.medrxiv.org/content/10.1101/2020.10.06.20205864v1

ORIGINAL ARTIC	u	
Genomewide Association Study of Se Failure		19 with Respiratory
The Severe Covid-19 GW	AS Group*	
Article Figures/Media	Metrics	October 15, 2020 N Engl J Med 2020; 383:1522-1534

nature > articles > article

Article | Published: 11 December 2020

This is an unedited manuscript that has been accepted for publication. Nature Research are providing this early version of the manuscript as a service to our authors and readers. The manuscript will undergo copyediting, typesetting and a proof review before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.

Genetic mechanisms of critical illness in Covid-19

Erola Pairo-Castineira, Sara Clohisey, [...] J. Kenneth Baillie 🖂

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Genomewide Association Study of Severe Covid-19 with Respiratory Failure

The Severe Covid-19 GWAS Group*

ABSTRACT

Cases: <u>Hospitalized COVID+</u>* (n=835 Italy/ 775 Spain) Controls: <u>Population based blood donors or health volunteers</u> (1255 Italy/950 Spain)

*no information on comorbidities or treatment

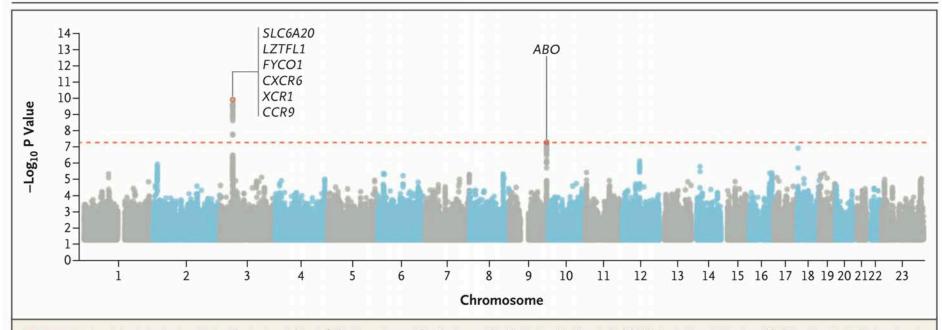
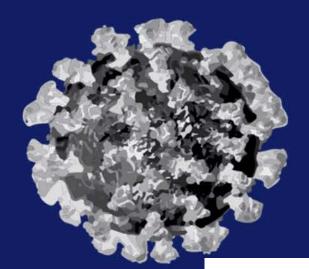



Figure 2. GWAS Summary (Manhattan) Plot of the Meta-analysis Association Statistics Highlighting Two Susceptibility Loci with Genomewide Significance for Severe Covid-19 with Respiratory Failure.

0

-

0

The COVID-19 **Host Genetics Initiative**

10

COVID-19 Host Genetics Initiative Coordination

Phenotype steering group

Les Biesecker

Andrea Ganna

David van Heel

Eric Kerchberger

Lea Davis Patrick Deelen Juha Karjalainen Mattia Cordioli Konrad Karczewski Mari Niemi Kumar Veerapen Wei Zhou Leadership

Analysis

Mark Daly

Andrea Ganna

Rachel Liao

Ben Neale

Sulggi Lee Tomoko Nakanishi James Priest Alessandra Renieri Brent Richards Vijay Sankaran

Data dictionary Anna Bernasconi

Brooke Wolford

Stefano Ceri Francesca Mari Alessandra Renieri

Scientific communication Kumar Veerapen

Disease Alliance

Amy Trankiem Kate Balaconis

Website Huy Nguyen Matthew Solomonson

Administrative support

Karolina Chwialkowska

Margherita Francescatto

Christine Stevens

International Common

		Phenotype	Hospitalized covid vs. population			
	_ALL	Population	Eur			
Very Severe Respi Total Cases		Total Cases	9986			alized COVID
		Total Controls	1877672			
(d)vtGot-	Phenotype		Name	n_cases	n_controls	
	07575		BQC19_EUR	244	396	
	Population		BelCovid_EUR	363	1477	
	Total Cases		CU_EUR	453	2149	
	Total Controls		EstBB_EUR	90	196339	
		FinnGen_FIN	106	238605	n_controls	
A	Contributing Stu	GENCOVID_EUR	893	2443		
		GHS_Freeze_145_EUR	180	112862		
		LGDB_EUR	57	1531	262	
		UCLA_EUR	80	17514	224	
		UKBB_EUR	1670	328577	51	
		Contributing Studies	idipaz24genetics_EUR	106	75	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100
1			Amsterdam_UMC_COVID_study_group_EUR	108	1413	151
	5 -	SPGRX_EUR	311	302		
	6 - 3 -		DECODE_EUR	89	274322	
		MVP_EUR	436	2180		
		HOSTAGE_EUR	1610	2205		
		23ANDME_EUR	613	680416		
		BoSCO_EUR	212	512		
		FHoGID_EUR	362	259		
			Ancestry_EUR	250	1967	
			SweCovid_EUR	77	3748	

GPCh37 liftover: COVID19 HGI B2 ALL our leave 23andme 20210107 h37 tyt az

1676

8380

genomicc_EUR

Summary: GWAS and COVID-19

- Interesting findings. Especially, chromosome 3 gene cluster that has been replicated using population controls.
- But, what does it all mean? Comparing cases to population controls? Without accounting for exposure, and often co-morbidities. It's a gene for something, but for COVID-19 severity?
- And COVID-19 susceptibility...comparing COVID+ to COVID- with no epidemiologic follow up is not ok. The ABO locus finding needs to be considered in this light.
- Nearly all European ancestry focused studies. The virus is not focused on one ancestry and yet all the research is...
- What we need:
 - Diverse and representative samples to really disentangle what is happening.
 - Understanding who is testing positive and WHY. Social and structural issues are at play in terms of risk and not addressed. Even education emerges in the correlation analyses, but not addressed.

JHH and Affiliated Hospitalized Patients JHH and Affiliated Ambulatory Patients

What are we doing at Johns Hopkins?

Main goals:

- 1. increase diversity of population sampled
- 2. Severity of infection in light of comorbidities and exposure
- 3. Cytokine response
- 4. Antibody response
- 5. Long Term outcomes

Genotyping at CIDR

COVID-19. What should we look at?

We need to be driven by the question. Rare cases of particular outcomes (MIS-C, MIS-A, clotting, kidney damage) What makes these individuals different?

Associations with cytokines, inflammatory markers. Can we identify early associations with biomarkers?

Associations with viral pathogen. Is there host-pathogen interaction?

Pharmacogenetics for clinical trials.

Does host genetics alter clinical trial meds?

Associations with humoral and T cell immunity?

Does genetics influence the antibody or T cell response to infection or reinfection?

Linking genetics with genomics.

Evaluating genetics, epigenetic, transcriptomics and others to tell a more complete story

In Sum:

We need to know who was exposed Need careful and **comprehensive characterization** of infection and disease.

CONTROLS matter. If you call someone uninfected you need to know they were exposed & still uninfected.

EXISTING RESOURCES: Biobanks, existing case-control studies and cohorts often cannot be used without additional efforts.

Acknowledgements

COVIDgene

Johns Hopkins COVID Long Study www.covid-long.com

Genes and ID research team at JHSPH

Hannah Manley, Tristan Penson, Cristian Valencia, Dylan Duchen, Rebecca Munday, Steven Clipman, Poonum Korpe, Candelaria Vergara, Genevieve Wojcik

COVIDGene Team

Hannah Manley, Tristan Penson, Leon Hsieh, Dylan Duchen, Rebecca Munday, Steven Clipman, Candelaria Vergara, Cristian Valencia, Genevieve Wojcik, Andrea Cox, Chloe Thio, Shruti Mehta,Laura Kasch-Semenza, David Thomas