
NISS Academic Affiliate Meet-up: Collaborations Between Academia and Industry

Multiple Pathways to Collaboration Between Academia and Industry in Data Science and Statistics

Victor S.Y. Lo

February 2020

- Background: Opportunities and Knowledge in Industry
- Industry advising Academia
- Academia advising Industry
- Student Opportunities
- Research and Publications

Disclaimer: This presentation does not represent any opinions from Fidelity Investments

Data Science Venn Diagram

Computer Science

Statistics & Math

Subject Matter Expertise

Soft Skills

e.g. Marketing, Finance, Insurance, Healthcare, Risk

e.g. Business
Consulting,
Communication,
Writing

See also: Lo (2019) https://pubsonline.informs.org/do/10.1287/LYTX.2019.04.02/full/

Analytics (Data Analytics, Business Analytics)

Prescriptive Analytics

What should we do? What is the Best Decision?

 Support decision making and proactive actions

Predictive Analytics

What will happen?

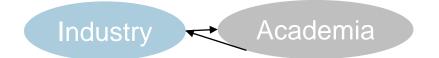
 Predict future forward-looking behavior, events, probabilities, or trends

Descriptive Analytics

What happened?

- Reports and profiling
- Data visualization
- Business Intelligence

3


Industry advising Academia

- □ Advice on program and course development and refinement:
 - O How statistics or analytics is used in the industry?
 - O What techniques are absolutely required? What are nice to have?
 - What programming languages are used? Software and hardware
 - Industry examples and case studies for classroom discussion
 - What other skills are needed in the industry?
- Guest lectures or seminars to provide industry applications for faculty and students
- ☐ Guidance for faculty and graduate students on industry related projects
- ☐ Collaboration on seminar series

□ Approaches for industry projects:

- What methodologies and tools are appropriate for an industry problem?
- What other approaches can be considered?
- Different academic fields can provide different kinds of guidance
- Academic validation of approaches
- Educational advice and support:
 - What degrees or courses industry analysts can take to enhance and expand their knowledge? What literature should they study?
 - Academia can offer tailored courses for:
 - Industry analysts, statisticians, scientists
 - Managers and executives
 - Top executives to promote use of analytics

Student Opportunities

- Mentorship for students who plan to work in industry
- ☐ Capstone projects
- □ Internship
- ☐ COOP
- □ Recruitment

Research and Publications

- ☐ Collaboration on **papers and books** methodologies, examples, context, analysis, industry implications
 - Academia and industry experts may have different views: depth vs breadth
 - Cutting-edge academic ideas can be applied in industry applications
 - Problems experienced in industry may lead to new academic research opportunities
- Where to find **DATA**?
 - o Public data: e.g., Kaggle
 - Simulated data: realistic distributions and association resemble actual data
 - Actual data: generally require a lot of security procedures such as using company devices and accounts

References

- T.H. Davenport and J.G. Harris (2007), Competing on Analytics. Harvard Business School Press.
- T.H. Davenport, J.G. Harris, and R. Morison (2010), *Analytics at Work*. Harvard Business Press.
- D. Gann, F. Montresor, and J. Eisenberg (2018), "3 Ways to Nurture Collaboration between Universities and Industry," World Economic Forum, at: https://www.weforum.org/agenda/2018/11/3-ways-to-nurture-collaboration-between-universities-and-industry/
- V.S.Y. Lo (2019) "Searching for the Perfect Unicorn," *Analytics Magazine*, INFORMS, available at: https://pubsonline.informs.org/do/10.1287/LYTX.2019.04.02/full/
- E. Pelleg, "Business Collaboration between the Academic World and Industry," Tefen Management Consulting, at:

 https://www.tefen.com/insights/services/SandM/collaboration_between_the_academic_world_
 - and_industry
- R. Rybnicek and R. Konigsgruber (2019), "What makes Industry-University Collaboration Succeed? A Systematic Review of the Literature," *Journal of Business Economics*, 89, p.221-250, at: https://link.springer.com/content/pdf/10.1007%2Fs11573-018-0916-6.pdf

APPENDIX

Statistics Career Opportunities

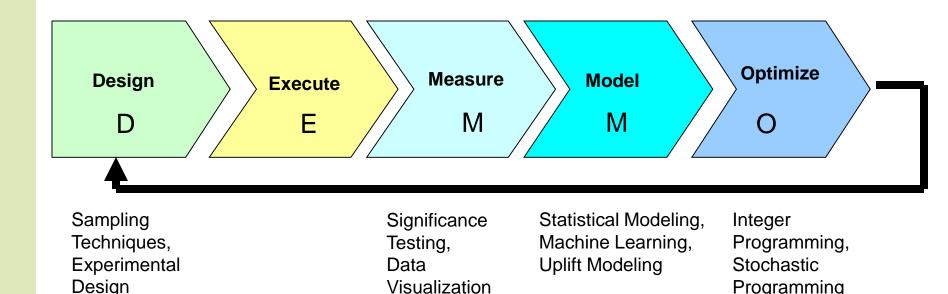
Career Category	Common Titles	Industry	Common Techniques	Typical Qualification ¹
1) Healthcare	Biostatistician, Statistician, Epidemiologist	Pharma, Hospitals, Medical Insurance, etc.	Experimental Design, Statistical Analysis, Causal Inference, Machine Learning	MS, PhD in Biostat, Stat, Epid
2) Data Science, Al, and Analytics	Data Scientist, Business Analyst, Machine Learning Engineer, Statistician, Marketing Scientist	ALL Industries	Machine Learning, Statistical Modeling, NLP, Experimental Design, Causal Inference, Advanced Programming, Survey Research	MS, MBA, PhD in CS, Stat, DS, Analytics, Econ, OR
3) Operations Management, Logistics, and Supply Chain Management	Operations Research Analyst, Operations Analyst, Business Analyst, Data Scientist	Manufacturing, Transportation, Retail, Finance, Defense, and Others	Time Series Forecasting, Machine Learning, Statistical Quality Control, Optimization, Discrete Event Simulation, NLP, Experimental Design	BA/BS, MS, MBA, PhD in OM, OR, IE, Stat, CS
4) Investment Management	Quantitative Analyst, Data Scientist	Finance	Time Series Analysis, Statistical Modeling, Optimization, Financial Engineering, NLP	MS, MBA, PhD in Finance, Econ, Physics, Stat, CS, Eng, plus CFA
5) Risk Management	Quantitative Risk Analyst, Risk Manager	Banking, Consulting, Finance	Risk Analytics, Time Series, Statistical Modeling, Machine Learning, Cryptography	MS, PhD in Econ, Stat, Finance, Eng, plus FRM
6) Actuarial Science	Actuary, Actuarial Consultant	Insurance, Finance	Probability, Statistical Modeling, Time Series, Risk Analytics	BS/BA, MS in Math, AS, Stat, plus ASA/FSA

¹ CS = Computer Science, DS = Data Science, OR = Operations Research, OM = Operations Management, IE = Industrial Engineering, Eng = Engineering, AS = Actuarial Science, CFA = Chartered Financial Analyst, FRM = Financial Risk Manager, ASA = Associate of the Society of Actuaries, FSA = Fellow of the Society of Actuaries

A.I. and Machine Learning Relationship

A.I.

- 1956 Dartmouth Workshop
- Rule-Based: Teach a Machine What to Do


Machine Learning: Let the machine learn

- Feed data and set a goal
- Highly related to Statistics

Deep Learning

Data Science & Analytics: Customer Relationship Management (CRM)

- Track and optimize contacts with customers
- Use historical customer contact data and apply analytics to improve future customer interactions:

Programming

Operations Management: Call Center Analytics

- 1. Demand **Forecasting** 2. Matching Supply to **Demand**
- **Exponential Smoothing**
- Box-Jenkins
- Deep Learning

Predictive Analytics

- Queuing Theory
- **Discrete Event Simulation**

- 3. Workforce **Optimization**
- Linear Programming
- Stochastic Programming
- · Intra-day dynamic scheduling

Prescriptive Analytics

2019 Career Rankings

Glassdoor - Top Job: Data Scientist

https://www.glassdoor.com/List/Best-Jobs.in-America-

Careercast - #1 Best Job: Data Scientist, #2: Statistician, #8: Mathematician, #9: Operations Research Analyst, #10 Actuary https://www.careercast.com/jobs-rated/2019-jobs-

rated-report

Summary:

Data Scientist, Statistician, Actuary, Operations Research Analyst, Machine Learning Engineer, or Mathematician are among the best careers

US News - #1 Best

Business Job: Statistician,

#2: Mathematician, #6:

Actuary, #7: Operations

Research Analyst

https://money.usnews.com/careers/bestjobs/rankings/best-business-jobs LinkedIn - #1 Most Promising
Job: Data Scientist, #15:
Machine Learning Engineer

https://blog.linkedin.com/2019/january/10/linkedins-most-promising-jobs-of-2019

Three Levels of Talents

Туре	Skills / Responsibilities	Typical Education
1) Citizen Data Scientist	Apply commercial software with solid interpretation; strong domain knowledge & business skills	Quantitative MBA/Master/BA/BS/BEng; or grown from Business Analyst/BI Analyst
2) Practical/Business Data Scientist	Ability to write advanced codes, process complex data, acquire & apply algorithms, integrate algorithms, explain findings (correlation vs causation)	MS Statistics, Computer Science, Economics, Management Science, Analytics, Data Science; PhD/ABD Economics, Marketing, Social Sciences
3) Data Science Innovator	Developer of new algorithms, innovation & research mindset to create new solutions and identify new problems	PhD/ABD Computer Science, Statistics, App Math, Engineering, Econometrics, Operations Research, Analytics with research & publication records

What Do These Talents Do For Your Business?

Type 1: Citizen Data Scientist

- Balance of Descriptive and Predictive Analytics
- Strong Domain Knowledge and other business skills

Type 2: Business Data Scientist

- Manage clients and suppliers
- Technical skills + Domain Knowledge + Strong Communication
- Integration and Creativity

Type 3: Data Science Innovator

- Research oriented, publications, patents
- Compete with tech firms and universities
- Develop specific powerful and world-class algorithms