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Outline

• A novel statistical procedure for leveraging external data 

in medical product evaluation

– Today’s focus: Propensity score-integrated approach

• Application: mitigating study power loss for a clinical 

study cut short due to the COVID-19 pandemic (this study 

will be called the “current study” henceforth)

• Concluding remarks
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Basic Statistical Ingredients

• Power prior (Bayesian) 

– Borrow external subjects with discounting

• Composite likelihood (frequentist)

– Incorporate external subjects with down-weighting

• Propensity score methodology

– Balance subject characteristics (covariates) between two groups: 

current study subjects and external subjects

• Propensity score-integrated approach – Today’s focus 

– Propensity score-integrated power prior – Bayesian 

– Propensity score-integrated composite likelihood – Frequentist 

– Goal: the augmentation of the current study with external data while 

maintaining study integrity
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Bayesian Power Prior

• A power prior is constructed as

π(θ|D0, α) ∝ [L(θ|D0)]
α π0(θ)

– θ : parameter of interest

– L(θ|D0):  likelihood of the external data

– π0(θ): initial prior distribution for θ

– α: power prior parameter, 0 ≤ α ≤ 1

• α: control how much external data to leverage

• α = 0: no leverage

• α = 1: full leverage

• Question: how and when to determine α for a prospective investigational 

study?

Ref. Chen, M-H and Ibrahim, J.G., (2000) Power Prior Distribution for Regression Models. 

Statistical Science, 15(1): 46-60
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• General form (weighted product of probability density functions):

𝐿(𝜃|𝑌) = ∏i 𝑓(𝑦𝑖 |𝜃)λi

where λi is nonnegative weight to be chosen, and can be used to discount  

subject info from external data source.

• We set: 

– λi = 1, if the subject i is from the investigational study

– 0 < λi ≤ 1, if the subject i is from the external data source

▪ E.g. If λi = 0.6, 60% of this subject’s info is leveraged and 40% discounted.

• Question: how and when to determine λ for a prospective investigational 

study?

Ref. Lindsay, BG (1988). Composite likelihood method. Contemporary mathematics, 80(1): 221-239.

Varin et al (2011). An overview of composite likelihood methods. Statistica Sinica, P5-42.

Composite Likelihood
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Propensity Score Methodology

• A ground-breaking statistical innovation for the design and analysis of 

observational studies, developed by Rosenbaum and Rubin in 1983 

(Rosenbaum and Rubin, 1983).

• Propensity score (PS): Conditional probability of receiving treatment A 

rather than treatment B, given a collection of observed baseline 

covariates.

• Replace a (large) number of observed confounding covariates with one 

scalar function of these covariates: the propensity score.

• Goal in observational studies: Simultaneously balance many observed 

covariates between the two treatment groups, and then reduce bias in 

treatment comparison on outcomes.

• Our Goal: Simultaneously balance many observed covariates between the 

external subjects as one group and current study subjects as the other 

group, to make leveraging external subjects more justified
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Propensity Score Methods

• Propensity score is estimated through statistical modeling of relationship 

between the covariates and membership of the groups between which 

covariates are to be balanced.

• Commonly used PS methods in the regulatory settings:

– Matching on propensity scores

– Stratification on propensity scores

– Weighting using propensity scores

• All these methods can separate study design from outcome analysis.

• In our application, propensity score stratification is used, propensity 

scores are estimated by independent statistician blinded to outcome data
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Propensity Score-Integrated Approach

• A new methodology for leveraging external data to augment a 

prospective investigational study.

– PS-integrated power prior (PS + PP)  - Bayesian 

– PS-integrated composite likelihood (PS + CL) – Frequentist 

• Used to 

– augment a single-arm investigational study with external data, 

– augment one or both arms of an RCT,

– with the option of discounting/down-weighting information from 

external data. 

• PS -> Study design

• PP or CL ->  Outcome analysis
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PS-Integrated Approach – Study Design

• Define PS as the conditional probability of being in the current study vs 

external source, given subject baseline covariates.

• Use PS to design the study:

▪ Select comparable subjects from external data source

▪ Stratify the pooled current study and external subjects

▪ Specify the amount by which information of external subjects is 

discounted/down-weighted (i.e., determine α in PP or λ in CL)

• Only baseline covariates are used in the above: Outcome free! 
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Leveraging External Data -- Caveats

• It is critical to assess whether leveraging external data fits for purpose for 

the specific objectives of the current study.

• Sufficient external data quality and integrity are essential for regulatory 

decision-making – relevance and reliability. 

• Outcome-free planning is critical – trial integrity and transparency.

• Early consultation with relevant FDA review division is important (FDA 

guidance documents).

• The propensity score-integrated approach can be used 

– To augment single-arm study with external data 

– To augment one or both arms of RCT with external data
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A Illustrative Example

• A single-arm clinical study

• Primary endpoint: one-year adverse event

• Parameter of interest: θ, probability of a subject experiencing adverse 

event(s) within the first year.

• Associated hypothesis testing:

H0 : θ ≥ 36%    vs:   Ha : θ < 36%

• Sample size determination

• Assume θ = 0.30

• Set: power = 80%; significance level = 0.05

• Then, N = 380
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A Illustrative Example (cont.)

• The enrolment was stopped at 290 due to the pandemic, and that it is not 

practical to reopen the enrolment at a later time. 

• It was proposed to 

– borrow 90 = 380 - 290 subjects from a registry for this device in Europe (the 

device was approved in EU), using the PS-integrated approaches.

– identify an independent statistician who was blinded to the outcomes data.

• Based on the subject inclusion/exclusion criteria specified in the current 

study, 941 subjects were selected from the registry.

• With the covariate data of 1,231 (290 + 941) subjects from the current 

study and registry, a propensity score model was created by the 

independent statistician, using logistic regression.  

• Propensity score is defined as the probability of a subjects being in the 

current study instead of the registry conditional on all the covariates.
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Table 1. Sample Sizes in PS Stratum 

1      2       3      4      5     Total 

Current Study (n)      58     58    58    58    58     290

Registry (n) 281   210  154  187  109    941

• Five PS strata were formed, and balance for each covariate was checked 

using numerical and graphical methods. 

• Note: 

– 90 external subjects were to be leveraged, but 941 identified. 

– Only partial info from each of 941 external subjects could be leveraged. 

– Partial?  How much? Depending on what? 

Step 1 – Split 90 nominal subjects into 5 PS strata

Step 2 – Determine power parameter α or exponent λ within each stratum 



14

Step 1. Split 90 nominal subjects 

• Split 90 nominal subjects into 5 PS strata, proportional to the 

similarity of external and the current subjects in terms of 

baseline covariates.

• The similarity is measured by an overlapping coefficient, the 

overlapping area of propensity score distributions of the two 

groups of subjects.
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PS Stratum 

1          2         3         4         5          Total  

Current Study (n)     58        58       58       58        58          290

Registry (n)              281      210     154     187     109         941

Overlap Coeff          0.87     0.78    0.86    0.84     0.77

Overlapping Coefficients 
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Standardized  Overlapping Coefficients 

PS Stratum 

1          2         3         4         5          Total  

Current Study (n)     58        58       58       58        58          290

Registry (n)              281      210     154     187     109         941

Overlap Coeff          0.87     0.78    0.86    0.84     0.77

Std. Overlap Coef.   21%    19%    21%     20%    19%       100%
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PS Stratum 

1          2         3         4         5          Total  

Current Study (n)     58        58       58       58        58          290

Registry (n)              281      210     154     187     109         941

Overlap Coeff 0.87     0.78    0.86    0.84     0.77

Std. Overlap Coef.   21%    19%    21%     20%    19%       100%

Subjects Leveraged    19        17        19      18        17           90

(90 x 21% =19)                             (90 x 19% = 17)

• The number of external subjects allocated to each PS stratum is 

proportional to their standardized overlapping coefficient.

Splitting 90 Nominal External subjects
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Step 2. Determining How Much Info to Leverage

• The info leveraged from each individual external subject depends on 

how many external subjects in that PS stratum.

• The power prior parameter for each individual external subject, α, is 

inversely proportional to the sample size of external subjects in the PS 

stratum.   

PS Stratum 

1            2           3         4         5            Total  

Current Study (n)      58          58        58       58        58           290

Registry (n)               281 210       154 187     109           941

Subjects Levd. (n)      19 17          19 18       17             90

α (or λ) 0.07 0.08     0.12 0.10    0.15 

(19/281 = 0.07)
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Leveraging External Data Planning – Finished

• We know  

– The PS stratum each subject would belong to.

– How much info each external subject could contribute.

– Study operating characteristics: 80% power; 5% Type I error rate. 

PS Stratum 

1          2         3         4         5          Total  

Current Study (n)     58        58       58       58        58          290

Registry (n)              281      210     154     187     109         941

α (or λ) 0.07     0.08    0.12    0.10     0.15 
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• After the clinical outcome was observed from all the subjects, the final 

analysis was conducted, based on the PS study design: 

PS Stratum 

1          2         3         4         5          Total  

Current Study (n)     58        58       58       58        58          290

Registry (n)              281      210     154     187     109         941

α             0.07     0.08    0.12    0.10     0.15 

• Apply the power prior approach within each stratum to get stratum-

specific posterior distribution, which are then combined to complete the 

inference for the parameter of interest. 

• The posterior probability of θ < 36% is 96.9%, which meets the study 

success criterion.

Outcome Analysis (Power Prior)
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Outcome Analysis (Composite Likelihood)

• After the clinical outcome was observed from all the 

subjects, the final analysis was conducted. 

PS Stratum 

1          2         3         4         5          Total  

Current Study (n)     58        58       58       58        58          290

Registry (n)              281      210     154     187     109         941

λ 0.07     0.08    0.12    0.10     0.15 

• Apply the composite likelihood approach to get stratum-specific 

parameter estimates, which are then combined to complete the inference 

for the parameter of interest.

• Maximum likelihood estimate of θ = 31%, p-value = 0.01.
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Concluding Remarks

• Novel statistical methods play a critical role in leveraging 

external data to support regulatory decisions. 

• Propensity score-integrated approaches can be applied to 

incorporate external data for a prospective investigational 

clinical study.

• Propensity score-integrated approach can be utilized to 

mitigate study power loss due to the COVID-19 pandemic.

2
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US FDA Guidance 

• US Food and Drug Administration (2020), “FDA Guidance on Conduct of 

Clinical Trials of Medical Products during COVID-19 Public Health 

Emergency,” available at https://www.fda.gov/regulatory-

information/search-fda-guidance-documents/fda-guidance-conduct-

clinical-trials-medical-products-during-covid-19-public-health-

emergency.

• US Food and Drug Administration (2020), “Statistical Considerations for 

Clinical Trials During the COVID-19 Public Health Emergency Guidance 

for Industry,” available at https://www.fda.gov/regulatory-

information/search-fda-guidance-documents/statistical-considerations-

clinical-trials-during-covid-19-public-health-emergency-guidance-

industry.

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/fda-guidance-conduct-clinical-trials-medical-products-during-covid-19-public-health-emergency
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/statistical-considerations-clinical-trials-during-covid-19-public-health-emergency-guidance-industry
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Thank You!
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