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Brief Introduction

What is Computer Aided Diagnostics (CAD)?
• Using algorithms to help clinicians analyze data

• (f)MRI, Histology, Xray, CT, etc

Why is it useful?
• Improves efficiency & robustness of medical diagnoses

• Fast, reproducible

• Leverage vast amounts of data already in existence

• More being created daily at an increasing rate

How can we use this data?
• Can perform data mining to identify trends

• Identifying subtle image patterns that may not be visually 
discernible

• Build systems to aid, not replace, doctors through 
decision support

• Long term goal of leading to precision medicine



Research vs Clinical CAD Applications

• Clinical Applications
• Recapitulate and automate existing processes

• Cancer detection, grading, counting and area estimation tasks

• Improvements through quantification, reproducibility, and definition refinement

• Research Applications
• Develop novel features and metrics

• Sub-type discovery 

• Biology elucidation

• Improvements through augmentation and new insights

>10 years
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Deep Learning
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Why use deep learning?

▪ Faster than creating hand-crafted features

▪ Hand-crafted nuclei segmentation = 3 years

▪ With deep learning  = 3 hours

▪ Shows great robustness (both presentation and noise)

▪ Able to examine more cases than developers

▪ At the end of the day:

•Clinicians don’t care how the pieces were made

•Only care what they can do with them



Our Proposed Framework

• “Deep learning for image analysis tasks in digital pathology: A 

comprehensive tutorial with selected applications in lymphoma, colorectal 

and breast cancer analysis”, Andrew Janowczyk and Anant Madabhushi, 

JPI 2016 (Most viewed award, >51k downloads)

• Through 7 use cases, provide best practices, code + data + tutorial for:*

1. nuclei segmentation (f-score of .83 across 12,000 nuclei)
2. epithelium segmentation (f-score of .84 across 1,735 regions)
3. tubule segmentation (f-score .83 from 795 tubules), 
4. lymphocyte detection (f-score .90 across 3,064 lymphocytes), 
5. mitosis detection (f-score .53 across 550 mitotic events), 
6. invasive ductal carcinoma detection (f-score .7648 on 50k testing patches)
7. lymphoma sub-type classification (classification accuracy of .97 across 374 images)

•All results are either comparable or superior to current state of the art

*Available: http://www.andrewjanowczyk.com

http://www.andrewjanowczyk.com/


Segmenting Epithelium

Original images in (a) and (d)

with their associated ground

truth in (b) and (e) overlaid in

fuchsia. We can see that the

results from the deep learning, in

(c) and (f), that a pixel level

metric is perhaps not ultimately

suited to quantify this task as DL

is better able to provide a pixel

level classification, intractable

for a human expert to parallel.



Development and evaluation of deep learning-based segmentation of 
histologic structures in the kidney cortex with multiple histologic stains



2. Research Applications



Pathologist annotations

train deep learning model

35% cribriform

Model measures tumor 

cribriform fraction
Automated cribriform assessment was prognostic in:
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Especially grade group 2

• Doubling of cribriform had HR of 1.19 when controlling grade, stage, pre-operative PSA, age

• Model was similarly prognostic across four institutions

• C-index of 0.66 in grade group 2 patients with cribriform, potential role in active surveillance

Kweldam et al. (2016) asked pathologists: Is this cribriform? Found just 23% agreement

9 yes / 13 no 7 yes / 13 no 11 yes / 8 no

• Cribriform increasingly recognized as 

high risk in prostate cancer

• Recent grading updates moved all 

cribriform patterns to Gleason 4

• Computers can take the subjectivity 

out of cribriform assessment

Automated cribriform quantification is prognostic of biochemical recurrence

Leo et al, European Urology Focus 2021



Peyster E., Arabyarmohammadi S., Janowczyk A., Azarianpour-Esfahani S., Sekulic M., Cassol C., Blower L., Parwani A., Lal P., Feldman M., 

Margulies K., Madabhushi A., “An Automated Computational Image Analysis Pipeline for Histologic Grading of Cardiac Allograft Rejection”, 

European Heart Journal, 2021

• Studies demonstrate the poor reliability of ISHLT 

grading (kappa = 0.39)

• Overall Inter-pathologist agreement of 65-70%

• Inter-pathologist agreement of 28.4% at the higher 

grades of rejection (2R and 3R)

• Potentially affect immunosuppressive therapy decisions 

• Computer-assisted cardiac histology evaluation 

(CACHE)-Grader

• N=2472 endomyocardial biopsy slides, 3 sites

• Features associated with interactions between 

myocytes, lymphocytes (counts, areas, spatial 

relationships)

• CACHE - 65.9%

• Inter-Pathologist agreement – 60%

Update me

An Automated Computational Image Analysis Platform for Accurate and 
Reliable Histologic Grading of Cardiac Allograft Rejection



Cell orientation entropy (COrE) features stratify more and less aggressive 
prostate cancer on tissue microarrays

Lee, G, Ali, S, et al., “Cell Orientation Entropy (Core): Predicting Biochemical Recurrence from Prostate Cancer Tissue Microarrays”, In Proc of 

Medical Image Computing and Computer Assisted Interventions (MICCAI), vol. 3, pp. 396-403, 2013.



Nuclear Shape and Orientation Features from H&E Images Predict 
Survival in Early Stage Estrogen Receptor Positive (ER+) Breast Cancers
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Unmet Clinical Need

• Early stage ER+ breast cancer (BCa) is the most 

common type of breast cancer in the United States

• Identifying which patients will receive added benefit 

from adjuvant chemotherapy is important

Data
• TMA of 276 ER+ LN- patients

• Training cohort (n=177 )

• Validation cohort (n=99)

Lu C., Romo D., Janowczyk A., Ganesan S., Gilmore H., Rimm D., Madabhushi A., "Nuclear Shape and Orientation Features from H&E Images 

Predict Survival in Early Stage Estrogen Receptor Positive (ER+) Breast Cancers", Nature Laboratory Investigation 2018 



Hypothesis: Spatial 
arrangement of TILs and 
local density variance 
are highly correlated to 
the patient response.

Top 5 most significant features 
obtained by feature selection

TIL detection and image feature extraction

4. Performance of the approach A QDA classifier was 
trained using a Training 
set (n=32) and a 
independently 
validation set from a 
different institution 
(n=24).

1. Median of TILs formed areas
2. Ratio of Cancer cells to TILs cells
3. Cancer cell averaged Density
4. Density of TILs
5. Median of Cancer cell formed areas

Wang, X, Barrera, C, Velu, P, Bera, K, Prasanna, P, Khunger, M, Khunger, A, Velcheti, V, Madabhushi, A, “Computer extracted features of cancer nuclei from H&E stained tissues of tumor predicts response to 

Nivolumab in non-small cell lung cancer”, American Society for Clinical Oncology (ASCO) Annual Meeting (Poster), Chicago, IL, 2018
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Spatial arrangement of tumor infiltrating lymphocytes (TILs) predict 
response to Nivolumab in non-small cell lung cancer (NSCLC)

Data sets:
Two independent data 
(whole slide image) 
acquired from UPenn 
(32) and CCF (24)



3. HistoSuite Tool Development
U01 NIH-NCI-ITCR



Unmet Need For Quality Control

• Transition to digital pathology 
workflows

• Digital Quality Control is paramount

• Recut and rescan slides immediately before 
getting into a workflow to a pathologist

• Cost and efficiency savings

• Previously not insurmountable
• Increasingly too time consuming to do 

manually

• Non-reproducible

We need better quality control of our slides!

Slides taken from diagnostic 

cohort of TCGA-BRCA



Surprising lack of reproducibility in manual QC

• For n=330 slides we simply provided a 
protocol and asked 3 readers:

• “Is this a good enough quality slide to 
computationally analyze?”

• We looked at the concordance between 3 
readers

• This implies that each of these 3 readers 
would have started with a different dataset 
before even beginning their experiment

• Irreproducible QC = Irreproducible 
Experiments!

Chen, Zee, Smith et al, Assessment of a Computerized Quantitative Quality Control Tool for Kidney Whole Slide 

Image Biopsies, Journal of Pathology, 2021



What is HistoQC?

• Open source reproducible slide quality metrics with 
artifact localization

• Python backend

• identify artifacts and produce binary masks of “good” 
tissue

• compute actionable quality scores and metrics

• HTML5 front end for visualizing and investigating 
results

• Able to aid in detection of Batch Effects!

• Available: http://HistoQC.com

1. Janowczyk A., Zuo R., Gilmore H., Feldman M., Madabhushi A., “HistoQC: An open-source 

quality control tool for digital pathology slides", JCO Clinical Cancer Informatics, 2019

2. Chen, Zee, Smith et al, Assessment of a Computerized Quantitative Quality Control Tool for 

Kidney Whole Slide Image Biopsies, Journal of Pathology, 2021

http://github.com/choosehappy/HistoQC


Extended HistoQC to 
imaging space with MRQy

• https://github.com/ccipd/MRQy

Sadri A., Janowczyk A., Zhou R., Verma R., Beig

N., Antunes J., Madabhushi A., Tiwari P. and 

Viswanath S., "Technical Note: MRQy -- An 

Open-Source Tool for Quality Control of MR 

Imaging Data", Medical Physics, 2020 (In press)

NIH ITCR U01 CA248226

RadxTools for assessing tumor treatment 

response on imaging

https://github.com/ccipd/MRQy


Quick Annotator
An open source digital pathology tool for rapidly annotating objects



Quick Annotator Approach 

Annotating images Deep learning prediction

Accept Revision



Quick Annotator – Results

• Quick annotator significant improves efficiency of annotation 
gathering

• Deep learning results in stain and domain agnostic tool

• Potential to improve upon human capabilities

• Tool Open Source for community usage and feedback

• Future work: support whole slide images

https://www.youtube.com/watch?v=J34_lSZn-CM

http://quickannotator.com
Miao R., Toth R., Zhou Y., Madabhushi A., Janowczyk A. “Quick Annotator: an open-source digital pathology based rapid 

image annotation tool”, The Journal of Pathology: Clinical Research, 2021
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https://www.youtube.com/watch?v=J34_lSZn-CM
http://quickannotator.com/


PatchSorter
A High Throughput Digital Pathology Tool for Cell Labeling



Motivation and Experimental Design

Motivation

• Computational pathology often requires 
assigning class-types, or labels, to 
segmented cells.

• Manually labeling the millions of cells present 
in digital pathology images is intractable at 
scale.

• PatchSorter enables users to assign labels 
at a group, as opposed to individual cell 
level, greatly improving labeling efficiency by 
over 60%.

• As the backend deep learning model is 
trained, clusters become more distinct further 
improving efficiency.

1. S. Graham, Q. D. Vu, S. E. A. Raza, A. Azam, Y-W. Tsang, J. T. Kwak and N. Rajpoot. "HoVer-Net: Simultaneous 

Segmentation and Classification of Nuclei in Multi-Tissue Histology Images." Medical Image Analysis, Sept. 2019.



Collecting First Set of Labels 

• A deep learning model is iteratively 
trained using provided labels to improve 
class separation.

• In the left plot, increased separation 
further facilitates rapid group selection 
and labeling.

• Options to view labeled or remaining 
unlabeled cells helps focus effort where 
needed.



After Deep Learning Model Training

• After importing images, an unsupervised 
embedding of cells into 2 predicted 
classes is visible in the plot (left).

• The user lassos points of interest in the 
plot and subsequently applies a definitive 
epithelial label (right, red-boxes).

• Importantly, similar cells appear near 
each other, enabling bulk selection, 
review, and labeling.

371% efficiency improvement for assigning labels to 

appropriate objects



Thank you!

Email: andrew.janowczyk@case.edu

Digital pathology blog:  andrewjanowczyk.com

HistoQC: http://histoqc.com

Quick Annotator: http://quickannotator.com

MRQy: https://github.com/ccipd/MRQy

Interested in 

Collaborating?

Email me!

mailto:andrew.janowczyk@case.edu
andrewjanowczyk.com
http://histoqc.com/
http://quickannotator.com/
https://github.com/ccipd/MRQy

