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The Example Dataset (i.e. Rich’s Dataset)

• 3 treatment (TRT) groups, i.e. Placebo, Drug1, and Drug2. 
• 6 animals (animalID) in each treatment group, and totally 18 animals.
• 18 values of each animal is measured in 18 time points (timeidx).
• A functional dataset at the log scale across time: log(value) =f(timeidx). 



Modeling in R

R Function for modeling:
gls() in the package of {nlme}

Important parameters of gls(): (Assuming 6 B-splines used)
• Model formula 

- model:  log(value) ~ [S1(timeidx)+…+S6(timeidx)]*TRT
• Parameters to define the covariance matrix

- weights (i.e. the variable function):  
"homoscedastic" or "heteroscedastic“

- correlation (i.e. correlation structure): 
CompSymm, AR(1), unstructured, etc. 



Modeling in SAS

Proc used for modeling: proc mixed

proc mixed data=thedata method=REML MMEQ;
class animalID TRT;
model value=TRT BF1 BF2 BF3 BF4 BF5 BF6 BF1*TRT 

BF2*TRT BF3*TRT BF4*TRT BF5*TRT BF6*TRT / solution
outp=testreml;

repeated / type=ar(1) subject=animalID r;
run;

Note: BF1 BF2 BF3 BF4 BF5 BF6: 6 B-splines used as bases





Drug1/Placebo = 0.375,   
t_max at  ~ 11 (time unit)

Drug2/Placebo = 0.301, 
t_max at ~ 9 (time unit)



The Example Dataset





Converged to a Bad Model

gls() claimed that the model is converged.

The residual plot shows that the model does not fit the data. 
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A Bayesian Solution

• Bayesian == a philosophy/theory + a modeling 
approach + a set of numeric solutions.

• Bayesian-based (generalized) linear models are well 
studied. Under conventional settings, the results are 
easy to obtain, and reproducible.

• Bayesian software packages encapsulating the 
technical details are abundantly available. 
Examples:  OpenBUGS, WinBUGS, JAGS, 
MCMCglmm, INLA, etc.



A Multivariate Normal Generative Model
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The Obtained Model



The Result
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A Frequentist’s Solution





Covariance Matrix Cholesky Decomposition 

( )* ( )diag diag=D C C
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Covariance Matrix vs. Auto-regression 
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Covariance Matrix Parameterization
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Regression Model Re-parameterization
• The original regression model                                                 

can be re-parameterized as a dynamic linear model

where

• Model parameters are changed from {β,Σ} to {β,γ,λ}
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An Iteratively Reweighted LS Algorithm *

1. Determine {β,γ}’s initial values as  {β0,γ0}.
2. Estimate the variance parameter λ based on the 

residuals of                                                         **

3. Obtain T and D via calculating               and
4. Compute covariance matrix as  
5. Update
6. Compute residuals
7. Update       based on       as 
8. Update
9. Update  
10. Stop the process if {β0,γ0}~= {β,γ}, otherwise       

{β0,γ0} = {β,γ}, and go to step 2. 
Note:    Used ~400 lines of R codes to implement this algorithm.
References: * Daniels MJ and Pourahmadi M, 2002.         ** Verbyla AP, 1993.
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Fitted Model



The Result



The Results

Bayesian Method

Frequentist’s Method
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Summary
Large biases in fixed effects caused by failed 
optimization in popular statistical packages, 
including R (NLME) and SAS (Proc Mixed).  
Problem: Pinpoint the exact place in the 
optimization where this issue happens. 
The issue can be circumvented/reduced using 
either a Bayesian or a Frequentist’s approach.
As for algorithmic coding, the Bayesian method is 
easier. As for future usage, the frequentist-based 
method is more straightforward (at least to me).
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