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Summary

Problem Statement

Setting Numerical microdata that may be

Missing

Erroneous

Dataset of Interest U.S. Census Bureau’s every-five-years Census of
Manufactures (CM)

Goal Simultaneously (and multiply) impute edit constraint-satisfying
replacements for both missing values and erroneous values

Impact
Improve data quality

Reduce cost: editing is estimated to consume 20–40% of survey
costs
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Background

Notation

i = subject

j = numerical attribute

X i ( j) = “true” value of attribute j for subject i

Yi ( j) = reported value of attribute j for subject i
Si ( j) = binary error indicator for attribute j for subject i

Conceptually, Si ( j) = 1
(
Yi ( j) 6= X i ( j)

)
Operationally, Si ( j) = 1 means that a replacement will be
imputed for Yi ( j)
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Background

Classes of Edit Constraints

Range Constraints L( j) ≤ Yi ( j) ≤ U ( j)

Ratio Constraints Yi ( j)/Yi (`) ≤ α j,` (better as Yi ( j) ≤ α j,`Yi (`))

Balance Constraints Yi ( j1)+ Yi ( j2)+ · · · + Yi ( j`) = Yi ( jm)

Compatibility Constraints (usually only for categorical data):
Yi ( j1) = y1 and Yi ( j2) = y2 are incompatible
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Background

Two Steps in Automated Data Editing

Error Localization Determine (estimate) Si ( j)

Multiple approaches, discussed momentarily

Error Correction Determine (calculate) replacement values for
those Yi ( j) for which Si ( j) = 1

Generally, some form of imputation

Violations of balance edits sometimes resolved by definition (not
always a good idea)
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Plan

This Talk: Compare Three Methods

Fellegi-Holt (FH) (JASA, 1976)

Error Localization: Use optimization algorithm to determine
[weighted] minimum number of attributes to impute

Error Correction: Historically, hot deck or . . . . In this talk,
constraint-preserving imputation algorithm of Kim, et al. (JBES,
2014, to appear)

Flag All Active Items (AAI)
Error Localization: Flag every Yi ( j) that is involved in an edit
violation

Error Correction: Constraint-preserving imputation algorithm of
Kim, et al.

Bayesian Editing (BE) Integrate localization and correction
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FH

What’s Wrong with Fellegi-Holt

1 Have to enumerate all implied constraints (otherwise can’t be
sure that minimization has been achieved)

2
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AAI and BE

Structure of the BE Model

More Notation
X = feasible region defined by range and ratio constraints

T = set of variables that are not “sums” in balance constraints

Ai ∈ {0, 1, 2, 3} = “nature of errors” indicator for subject i

Model for {X i ( j) : j ∈ T } Mixed multivariate normal restricted to
X: parameters K , µk , 6k , π

Model for π Dirichlet process (stick-breaking representation)

Model for {X i ( j) : j /∈ T } Equal to sum of components

Alan Karr, RTI Bayesian Editing 8/22



Introduction Methods Results Conclusion

AAI and BE

Model Structure—2

Model for Ai |X i May involve parameters ψ , but f (a|x, ψ) ∝ 1

Model for Si |(X i , Ai ) May involve parameters ψ , but
f (s|x, a, ψ) ∝ 1

Model for Yi |(X i , Si ) Ei = { j : Si ( j) = 1} (erroneous components)

Si ( j) = 0⇒ Yi ( j) = X i ( j)

Yi (Ei ) uniform on (subset of bounding hypercube) \X

Model for Missingness At the moment, MAR

Yi ( j) missing⇒ Si ( j) = ∗

Priors The standard noninformative choices
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AAI and BE

BIG Inference Assumptions

AAI and BE Yi ∈ X⇒ Si = 0

Tempting interpretation: Yi ∈ X⇒ X i = Yi

Safer interpretation: If Yi ∈ X, no basis for changing it

AAI Yi ( j) involved in an edit violation⇒ Si ( j) = 1
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AAI and BE

The MCMC

Gibbs update for all but a few steps

Data augmentation techniques to ease estimation of truncated
normal distributions (O’Malley and Zaslavsky, JASA, 2008)
Simultaneously draw imputed values X and editing indicators S

1 Propose S∗ from neighbors of current S using birth-death process
2 Generate X∗ given S∗ from constrained mixture of normals
3 Accept/reject (X∗, S∗) by Metropolis-Hastings
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Simulation

Structure

9 variables
Range constraints for every variable
Ratio constraints for some pairs of variables
Two balance constraints: X (4) = X (1)+ X (2)+ X (3) and
X (7) = X (5)+ X (6)

n = 2000 error-free values of(
X i (1), X i (2), X i (3), X i (5), X i (6), X i (8), X i (9)

)
from mixture of normals; calculate X i (4) and X i (7) from
balance constraints
For 1000 out of 2000 records, introduce edit-failing records
using model (so no mis-specification)
5% missingness, CAR
500 simulations
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Simulation

Pictorial Results: Data
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Simulation

Pictorial Results: Correlations
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Simulation

Numerical Results: 95% CI Coverage for Population Means

Variable True X E-P X True S FH AAI BE
X (1) 95.2 95.4 96.2 90.0 96.2 95.8
X (2) 93.0 95.4 95.6 6.4 97.0 95.4
X (3) 94.4 95.6 94.0 95.2 97.6 96.2
X (4) 93.4 93.0 94.6 96.6 94.8 95.2
X (5) 93.8 94.0 94.4 0.0 93.4 92.4
X (6) 94.8 94.2 93.8 0.8 97.8 93.0
X (7) 94.8 94.4 94.2 10.8 94.4 92.2
X (8) 95.0 95.6 94.6 96.6 95.8 93.8
X (9) 95.6 92.2 96.4 67.0 94.0 95.4
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Simulation

Numerical Results: Relative Bias for Regression
Coefficients

Model X i (9) = β(0)+ β(1)X i (1)+ β(5)X i (5)+ β(9)X i (9)+ εi

Variable True X E-P X True S FH AAI BE
β(0) 0.2 0.1 0.3 -2.6 -1.8 0.9
β(1) -0.8 -1.6 -0.3 51.7 10.3 -2.9
β(5) 0.0 0.4 0.3 -41.6 -3.3 1.7
β(9) 0.2 0.5 -0.3 -0.4 -2.2 -0.4

Relative Bias = 1
|Q|

(
1
R

∑R
r=1 Q̂r − Q

)
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CM

Basics

Part of Economic Census (most recent data: 2007)

Example attributes: (logs of) cost of materials, total
employment, total value of shipments, . . . (so linear regressions
are Cobb-Douglas production functions)

Industry-specific ratio and balance constraints

Current method: combination of manual and FH + hot deck
(SPEER), labeled FC (Final Census)

Our Study One NAICS code, 1869 establishments, 27 variables,
Title 13-protected (so worked in RDC)
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CM

Pictorial Results: Correlations
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AAI vs. BE

AAI or BE?

Criterion Winner
Specification of constraints Tie

Intellectual appeal BE: borrows more strength
“Right” amount of imputation BE

Incorporate domain knowledge of errors BE: prior on S
Estimated distribution of S BE: posterior distribution

Bayes “shock factor” AAI
Computational burden AAI: 10× speed

Information about measurement error Neither
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Some Questions

Unresolved Issues: Specific

1 What are the effects of model mis-specification?
2 What are the tradeoffs between record-level correctness and

inferential correctness?
3 Should the same imputation model be used for both missing and

erroneous data?
4 What about weights?
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Some Questions

Unresolved Issues: Broad

1 What if administrative data are available?
2 Do we need a taxonomy for erroneousness: erroneous

completely at random, at random, non-ignorably?
3 What difference would it make to have a (good) measurement

error model?
4 Can we integrate edit, imputation and disclosure limitation?

Alan Karr, RTI Bayesian Editing 21/22



Introduction Methods Results Conclusion

Details
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