Bayesian Data Editing for Continuous Microdata

Alan F. Karr
RTI International

(with L. H. Cox, H. Kim, J. P. Reiter, Q. Wang)

ITSEW 2014, Washington
October 3, 2014
Problem Statement

Setting Numerical microdata that may be

- Missing
- Erroneous

Dataset of Interest U.S. Census Bureau’s every-five-years Census of Manufactures (CM)

Goal Simultaneously (and multiply) impute edit constraint-satisfying replacements for *both* missing values and erroneous values

Impact

- Improve data quality
- Reduce cost: editing is estimated to consume 20–40% of survey costs
Notation

- $i =$ subject
- $j =$ numerical attribute
- $X_i(j) =$ “true” value of attribute j for subject i
- $Y_i(j) =$ reported value of attribute j for subject i
- $S_i(j) =$ binary error indicator for attribute j for subject i
 - *Conceptually,* $S_i(j) = 1(Y_i(j) \neq X_i(j))$
 - *Operationally,* $S_i(j) = 1$ means that a replacement will be imputed for $Y_i(j)$
Classes of Edit Constraints

Range Constraints \(L(j) \leq Y_i(j) \leq U(j) \)

Ratio Constraints \(Y_i(j) / Y_i(\ell) \leq \alpha_{j,\ell} \) (better as \(Y_i(j) \leq \alpha_{j,\ell} Y_i(\ell) \))

Balance Constraints \(Y_i(j_1) + Y_i(j_2) + \cdots + Y_i(j_\ell) = Y_i(j_m) \)

Compatibility Constraints (usually only for categorical data):
\(Y_i(j_1) = y_1 \) and \(Y_i(j_2) = y_2 \) are incompatible
Two Steps in Automated Data Editing

Error Localization Determine (estimate) $S_i(j)$
- Multiple approaches, discussed momentarily

Error Correction Determine (calculate) replacement values for those $Y_i(j)$ for which $S_i(j) = 1$
- Generally, some form of imputation
- Violations of balance edits sometimes resolved by definition (not always a good idea)
This Talk: Compare Three Methods

Fellegi-Holt (FH) *(JASA, 1976)*
- Error Localization: Use optimization algorithm to determine [weighted] minimum number of attributes to impute
- Error Correction: Historically, hot deck or In this talk, constraint-preserving imputation algorithm of Kim, et al. *(JBES, 2014, to appear)*

Flag All Active Items (AAI)
- Error Localization: Flag every $Y_i(j)$ that is involved in an edit violation
- Error Correction: Constraint-preserving imputation algorithm of Kim, et al.

Bayesian Editing (BE) Integrate localization and correction
What’s Wrong with Fellegi-Holt

1. Have to enumerate all implied constraints (otherwise can’t be sure that minimization has been achieved)

2. Diagram showing edit-passing and edit-failing reported values.
Structure of the BE Model

More Notation

- $\mathcal{X} =$ feasible region defined by range and ratio constraints
- $T =$ set of variables that are not “sums” in balance constraints
- $A_i \in \{0, 1, 2, 3\} =$ “nature of errors” indicator for subject i

Model for $\{X_i(j) : j \in T\}$ Mixed multivariate normal restricted to \mathcal{X}: parameters K, μ_k, Σ_k, π

Model for π Dirichlet process (stick-breaking representation)

Model for $\{X_i(j) : j \notin T\}$ Equal to sum of components
Model Structure—2

Model for $A_i \mid X_i$ May involve parameters ψ, but $f(a \mid x, \psi) \propto 1$

Model for $S_i \mid (X_i, A_i)$ May involve parameters ψ, but $f(s \mid x, a, \psi) \propto 1$

Model for $Y_i \mid (X_i, S_i)$ $E_i = \{ j : S_i(j) = 1 \}$ (erroneous components)

- $S_i(j) = 0 \Rightarrow Y_i(j) = X_i(j)$
- $Y_i(E_i)$ uniform on (subset of bounding hypercube) \ \mathcal{X}

Model for Missingness At the moment, MAR

- $Y_i(j)$ missing $\Rightarrow S_i(j) = *$

Priors The standard noninformative choices
BIG Inference Assumptions

AAI and BE \(Y_i \in \mathcal{X} \Rightarrow S_i = 0 \)

- Tempting interpretation: \(Y_i \in \mathcal{X} \Rightarrow X_i = Y_i \)
- Safer interpretation: If \(Y_i \in \mathcal{X} \), no basis for changing it

AAI \(Y_i(j) \) involved in an edit violation \(\Rightarrow S_i(j) = 1 \)
The MCMC

- Gibbs update for all but a few steps
- Data augmentation techniques to ease estimation of truncated normal distributions (O’Malley and Zaslavsky, JASA, 2008)
- Simultaneously draw imputed values X and editing indicators S
 1. Propose S^* from neighbors of current S using birth-death process
 2. Generate X^* given S^* from constrained mixture of normals
 3. Accept/reject (X^*, S^*) by Metropolis-Hastings
Structure

- 9 variables
 - Range constraints for every variable
 - Ratio constraints for some pairs of variables
 - Two balance constraints: \(X(4) = X(1) + X(2) + X(3) \) and \(X(7) = X(5) + X(6) \)
- \(n = 2000 \) error-free values of
 \[
 \left(X_i(1), X_i(2), X_i(3), X_i(5), X_i(6), X_i(8), X_i(9) \right)
 \]
 from mixture of normals; calculate \(X_i(4) \) and \(X_i(7) \) from balance constraints
- For 1000 out of 2000 records, introduce edit-failing records using model (so no mis-specification)
- 5% missingness, CAR
- 500 simulations
Pictorial Results: Data
Pictorial Results: Correlations
Numerical Results: 95% CI Coverage for Population Means

<table>
<thead>
<tr>
<th>Variable</th>
<th>True X</th>
<th>E-P X</th>
<th>True S</th>
<th>FH</th>
<th>AAI</th>
<th>BE</th>
</tr>
</thead>
<tbody>
<tr>
<td>X (1)</td>
<td>95.2</td>
<td>95.4</td>
<td>96.2</td>
<td>90.0</td>
<td>96.2</td>
<td>95.8</td>
</tr>
<tr>
<td>X (2)</td>
<td>93.0</td>
<td>95.4</td>
<td>95.6</td>
<td>6.4</td>
<td>97.0</td>
<td>95.4</td>
</tr>
<tr>
<td>X (3)</td>
<td>94.4</td>
<td>95.6</td>
<td>94.0</td>
<td>95.2</td>
<td>97.6</td>
<td>96.2</td>
</tr>
<tr>
<td>X (4)</td>
<td>93.4</td>
<td>93.0</td>
<td>94.6</td>
<td>96.6</td>
<td>94.8</td>
<td>95.2</td>
</tr>
<tr>
<td>X (5)</td>
<td>93.8</td>
<td>94.0</td>
<td>94.4</td>
<td>0.0</td>
<td>93.4</td>
<td>92.4</td>
</tr>
<tr>
<td>X (6)</td>
<td>94.8</td>
<td>94.2</td>
<td>93.8</td>
<td>0.8</td>
<td>97.8</td>
<td>93.0</td>
</tr>
<tr>
<td>X (7)</td>
<td>94.8</td>
<td>94.4</td>
<td>94.2</td>
<td>10.8</td>
<td>94.4</td>
<td>92.2</td>
</tr>
<tr>
<td>X (8)</td>
<td>95.0</td>
<td>95.6</td>
<td>94.6</td>
<td>96.6</td>
<td>95.8</td>
<td>93.8</td>
</tr>
<tr>
<td>X (9)</td>
<td>95.6</td>
<td>92.2</td>
<td>96.4</td>
<td>67.0</td>
<td>94.0</td>
<td>95.4</td>
</tr>
</tbody>
</table>
Numerical Results: Relative Bias for Regression Coefficients

Model $X_i(9) = \beta(0) + \beta(1)X_i(1) + \beta(5)X_i(5) + \beta(9)X_i(9) + \epsilon_i$

<table>
<thead>
<tr>
<th>Variable</th>
<th>True X</th>
<th>E-P X</th>
<th>True S</th>
<th>FH</th>
<th>AAI</th>
<th>BE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta(0)$</td>
<td>0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>-2.6</td>
<td>-1.8</td>
<td>0.9</td>
</tr>
<tr>
<td>$\beta(1)$</td>
<td>-0.8</td>
<td>-1.6</td>
<td>-0.3</td>
<td>51.7</td>
<td>10.3</td>
<td>-2.9</td>
</tr>
<tr>
<td>$\beta(5)$</td>
<td>0.0</td>
<td>0.4</td>
<td>0.3</td>
<td>-41.6</td>
<td>-3.3</td>
<td>1.7</td>
</tr>
<tr>
<td>$\beta(9)$</td>
<td>0.2</td>
<td>0.5</td>
<td>-0.3</td>
<td>-0.4</td>
<td>-2.2</td>
<td>-0.4</td>
</tr>
</tbody>
</table>

Relative Bias $= \frac{1}{|Q|} \left(\frac{1}{R} \sum_{r=1}^{R} \hat{Q}_r - Q \right)$
Basics

- Part of Economic Census (most recent data: 2007)
- Example attributes: (logs of) cost of materials, total employment, total value of shipments, ... (so linear regressions are Cobb-Douglas production functions)
- Industry-specific ratio and balance constraints
- Current method: combination of manual and FH + hot deck (SPEER), labeled FC (Final Census)

Our Study One NAICS code, 1869 establishments, 27 variables, Title 13-protected (so worked in RDC)
Pictorial Results: Correlations
AAI or BE?

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Winner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification of constraints</td>
<td>Tie</td>
</tr>
<tr>
<td>Intellectual appeal</td>
<td>BE: borrows more strength</td>
</tr>
<tr>
<td>“Right” amount of imputation</td>
<td>BE</td>
</tr>
<tr>
<td>Incorporate domain knowledge of errors</td>
<td>BE: prior on S</td>
</tr>
<tr>
<td>Estimated distribution of S</td>
<td>BE: posterior distribution</td>
</tr>
<tr>
<td>Bayes “shock factor”</td>
<td>AAI</td>
</tr>
<tr>
<td>Computational burden</td>
<td>AAI: $10\times$ speed</td>
</tr>
<tr>
<td>Information about measurement error</td>
<td>Neither</td>
</tr>
</tbody>
</table>
Unresolved Issues: Specific

1. What are the effects of model mis-specification?
2. What are the tradeoffs between record-level correctness and inferential correctness?
3. Should the same imputation model be used for both missing and erroneous data?
4. What about weights?
Unresolved Issues: Broad

1. What if administrative data are available?
2. Do we need a taxonomy for erroneousness: erroneous completely at random, at random, non-ignorably?
3. What difference would it make to have a (good) measurement error model?
4. Can we integrate edit, imputation and disclosure limitation?
Acknowledgements and More Information

Support NSF grant SES–1131897

Contact Information karr@rti.org