Fractional hot deck imputation for multivariate missing data in survey sampling

Jae Kwang Kim Wayne A. Fuller

Iowa State University

October 17, 2014

Features

- Split the record with missing item into m(>1) imputed values
- Assign fractional weights
- The final product is a single data file with size $\leq nm$.
- For variance estimation, the fractional weights are replicated.

Example	e(n =	10)
---------	-------	-----

	,		
ID	Weight	<i>y</i> 1	<i>y</i> ₂
1	w_1	<i>y</i> 1,1	<i>y</i> _{1,2}
2	W_2	<i>y</i> 2,1	M
3	W_3	М	<i>y</i> _{3,2}
4	W_4	<i>y</i> 4,1	<i>y</i> _{4,2}
5	W ₅	<i>y</i> 5,1	<i>y</i> 5,2
6	w_6	<i>y</i> 6,1	<i>y</i> 6,2
7	W ₇	М	<i>y</i> 7,2
8	<i>W</i> 8	М	M
9	W9	<i>y</i> 9,1	<i>y</i> 9,2
10	w_{10}	<i>y</i> _{10,2}	<i>y</i> _{10,2}

M: Missing

Fractional Imputation Idea

If both y_1 and y_2 are categorical, then fractional imputation is easy to apply.

- We have only finite number of possible values.
- Imputed values = possible values
- The fractional weights are the conditional probabilities of the possible values given the observations.
- Can use "EM by weighting" method of Ibrahim (1990) to compute the fractional weights.

Example (y_1, y_2) : dichotomous, taking 0 or 1)

()	- / - -		
ID	Weight	<i>y</i> ₁	<i>y</i> ₂
1	w_1	<i>y</i> 1,1	<i>y</i> 1,2
2	$w_2 w_{2,1}^*$	<i>y</i> 2,1	0
	$W_2W_{2,2}^*$	<i>y</i> _{2,1}	1
3	$W_3W_{3,1}^*$	0	<i>y</i> 3,2
	$W_3W_{3,2}^*$	1	<i>y</i> 3,2
4	W4	<i>y</i> 4,1	<i>y</i> 4,2
5	W ₅	<i>y</i> 5,1	<i>y</i> 5,2

Example (y_1, y_2) : dichotomous, taking 0 or 1)

ID	Weight	<i>y</i> ₁	<i>y</i> ₂
6	w ₆	<i>y</i> 6,1	<i>y</i> 6,2
7	$w_7 w_{7,1}^*$	0	<i>y</i> 7,2
	$w_7 w_{7,2}^*$	1	<i>y</i> _{7,2}
8	$W_8W_{8,1}^*$	0	0
	$W_8W_{8,2}^*$	0	1
	$W_8W_{8,3}^*$	1	0
	$W_8W_{8,4}^*$	1	1
9	<i>W</i> 9	<i>y</i> 9,1	<i>y</i> 9,2
10	w_{10}	<i>y</i> 10,1	<i>y</i> 10,2

Example (Cont'd)

 E-step: Fractional weights are the conditional probabilities of the imputed values given the observations.

$$w_{ij}^{*} = \hat{P}(y_{i,mis}^{*(j)} | y_{i,obs})$$

$$= \frac{\hat{\pi}(y_{i,obs}, y_{i,mis}^{*(j)})}{\sum_{l=1}^{M_{i}} \hat{\pi}(y_{i,obs}, y_{i,mis}^{*(l)})}$$

where $(y_{i,obs}, y_{i,mis})$ is the (observed, missing) part of $y_i = (y_{i1}, \dots, y_{i,p})$.

• M-step: Update the joint probability using the fractional weights.

$$\hat{\pi}_{ab} = \frac{1}{\hat{N}} \sum_{i=1}^{n} \sum_{j=1}^{M_i} w_i w_{ij}^* I(y_{i,1}^{*(j)} = a, y_{i,2}^{*(j)} = b)$$

with
$$\hat{N} = \sum_{i=1}^{n} w_i$$
.

Example (Cont'd) Variance estimation

- Recompute the fractional weights for each replication
- Apply the same EM algorithm using the replicated weights.
 - E-step: Fractional weights are the conditional probabilities of the imputed values given the observations.

$$w_{ij}^{*(k)} = \frac{\hat{\pi}^{(k)}(y_{i,obs}, y_{i,mis}^{*(j)})}{\sum_{l=1}^{M_i} \hat{\pi}^{(k)}(y_{i,obs}, y_{i,mis}^{*(l)})}$$

• M-step: Update the joint probability using the fractional weights.

$$\hat{\pi}_{ab}^{(k)} = \frac{1}{\hat{N}^{(k)}} \sum_{i=1}^{n} \sum_{i=1}^{M_i} w_i^{(k)} w_{ij}^{*(k)} I(y_{i,1}^{*(j)} = a, y_{i,2}^{*(j)} = b)$$

where
$$\hat{N}^{(k)} = \sum_{i=1}^{n} w_i^{(k)}$$
.

Example (Cont'd) Final Product

·	`				Replication V	Veight	· S
					•	Veigni	
Weight	X	<i>y</i> 1	<i>y</i> 2	Rep 1	Rep 2	• • •	Rep <i>L</i>
w_1	<i>x</i> ₁	<i>y</i> _{1,1}	<i>y</i> _{1,2}	$w_1^{(1)}$	$w_1^{(2)}$		$w_1^{(L)}$
$w_2 w_{2,1}^*$	<i>x</i> ₂	<i>y</i> 2,2	0	$w_2^{(1)}w_{2,1}^{*(1)}$	$w_2^{(2)}w_{2,1}^{*(2)}$		$w_2^{(L)}w_{2,1}^{*(L)}$
$W_2W_{2,2}^*$	<i>x</i> ₂	<i>y</i> _{2,2}	1	$w_2^{(1)}w_{2,2}^{*(1)}$	$w_2^{(2)}w_{2,1}^{*(2)}$		$w_2^{(L)}w_{2,2}^{*(L)}$
$w_3 w_{3,1}^*$	<i>X</i> 3	0	<i>y</i> 3,2	$w_3^{(1)}w_{3,1}^{*(1)}$	$w_3^{(2)} w_{3,1}^{*(2)}$ $(2) *(2)$		$w_3^{(L)}w_{3,1}^{*(L)}$
$W_3W_{3,2}^*$	<i>X</i> 3	1	<i>y</i> 3,2	$W_3^{(1)}W_{3,2}^{*(1)}$	W_3 W_3 Y_3		$w_3^{(L)}w_{3,2}^{*(L)}$
W ₄	<i>X</i> 4	<i>y</i> 4,1	<i>y</i> 4,2	$w_4^{(1)}$	$W_{\hat{A}}$		$W_{4}^{(L)}$
W ₅	<i>X</i> 5	<i>y</i> 5,1	<i>y</i> 5,2	$w_5^{(1)}$	$w_{5}^{(2)}$		$w_5^{(L)}$
w ₆	<i>x</i> ₆	<i>y</i> _{6,1}	<i>y</i> _{6,2}	$w_6^{(1)}$	$w_6^{(2)}$		$w_6^{(L)}$

Example (Cont'd) Final Product

				F	Replication V	Veight	S
Weight	X	y_1	<i>y</i> ₂	Rep 1	Rep 2		Rep L
$w_7 w_{7,1}^*$	<i>X</i> ₇	0	<i>y</i> _{7,2}	$w_{7}^{(1)}w_{7,1}^{*(1)}$	$w_7^{(2)}w_{7,1}^{*(2)}$		$w_{7}^{(L)}w_{7,1}^{*(L)}$
$w_7 w_{7,2}^*$	<i>X</i> ₇	1	<i>y</i> _{7,2}	$w_7^{(1)}w_{7,2}^{*(1)}$	$w_7^{(2)}w_{7,2}^{*(2)}$		$W_7^{(L)}W_{7,2}^{*(L)}$
$w_8w_{8,1}^*$	<i>x</i> ₈	0	0	$W_8^{(1)}W_{8,1}^{*(1)}$	$W_{8}^{(1)}W_{8,1}^{*(2)}$		$W_{8}^{(L)}W_{81}^{*(L)}$
$w_8w_{8,2}^*$	<i>x</i> ₈	0	1	$w_8^{(1)}w_{8.2}^{*(1)}$	$W_8^{(2)}W_{8,2}^{*(2)}$		$W_8^{(L)}W_{8,2}^{*(L)}$
$w_8 w_{8,3}^*$	<i>x</i> ₈	1	0	$W_{8}^{(1)}W_{83}^{*(1)}$	$w_8^{(2)} w_{8.3}^{*(2)}$		$W_{8}^{(L)}W_{83}^{*(L)}$
$w_8 w_{8,4}^*$	<i>x</i> ₈	1	1	$W_{8}^{(1)}W_{8A}^{*(1)}$	$W_8^{(1)}W_{8,4}^{*(2)}$		$W_{8}^{(L)}W_{84}^{*(L)}$
W ₉	<i>X</i> 9	<i>y</i> 9,1	<i>y</i> 9,2	$w_0^{(1)}$	$w_{0}^{(2)}$		$W_0^{(L)}$
<i>w</i> ₁₀	<i>x</i> ₁₀	<i>y</i> _{10,1}	<i>y</i> _{10,2}	$w_{10}^{(1)}$	$w_{10}^{(2)}$	• • •	$w_{10}^{(L)}$

Goals

- Fractional hot deck imputation of size m. The final product is a single data file with size $\leq n \cdot m$.
- Preserves correlation structure
- Variance estimation relatively easy
- Can handle domain estimation (but we do not know which domains will be used.)

Parametric model approach

- In the parametric model approach, imputed values can be generated from $f(y_{i,mis} \mid y_{i,obs}, \hat{\theta})$ where $\hat{\theta}$ is the MLE of θ .
- Kim (2011) proposed parametric fractional imputation (PFI) which is based on importance sampling idea

$$w_{ij}^* \propto \frac{f(y_{i,obs}, y_{i,mis}^{*(j)}; \hat{\theta})}{h(y_{i,mis}^{*(j)} \mid y_{i,obs})}$$

with $\sum_{j=1}^{m} w_{ij}^* = 1$, where $y_{i,mis}^{*(1)}, \cdots, y_{i,mis}^{*(m)} \sim h(y_{i,mis} \mid y_{i,obs})$.

Idea

• In hot deck imputation, we can make a nonparametric approximation of $f(\cdot)$ using a finite mixture model

$$f(y_{i,mis} \mid y_{i,obs}) = \sum_{g=1}^{G} \pi_g(y_{i,obs}) f_g(y_{i,mis}),$$
 (1)

where $\pi_g(y_{i,obs}) = P(z_i = g \mid y_{i,obs})$, $f_g(y_{i,mis}) = f(y_{i,mis} \mid z = g)$ and z is the latent variable associated with imputation cell.

ullet To satisfy the above approximation, we need to find z such that

$$f(y_{i,mis} \mid z_i, y_{i,obs}) = f(y_{i,mis} \mid z_i).$$

Imputation cell

- Assume *p*-dimensional survey items: $Y = (Y_1, \dots, Y_p)$
- For each item k, create a transformation of Y_k into Z_k , a discrete version of Y_k based on the sample quantiles among respondents.
- If $y_{i,k}$ is missing, then $z_{i,k}$ is also missing.
- Imputation cells are created based on the observed value of $z_i = (z_{i,1}, \dots, z_{i,p})$.
- Expression (1) can be written as

$$f(y_{i,mis} \mid y_{i,obs}) = \sum_{z_{mis}} P(z_{i,mis} = z_{mis} \mid z_{i,obs}) f(y_{i,mis} \mid z_{mis}), \quad (2)$$

where $z_i = (z_{i,obs}, z_{i,mis})$ similarly to $y_i = (y_{i,obs}, y_{i,mis})$.

Estimation of cell probability

- Let $\{z_1, \dots, z_G\}$ be the support z, which is the same as the sample support of z from the full respondents.
- Cell probability $\pi_g = P(z = z_g)$.
- For each unit i, we only observe $z_{i,obs}$.
- ullet Use EM algorithm for categorical missing data to estimate π_g .

Two-stage sampling for fractional hot deck imputation of size m

- Stage 1: Given $z_{i,obs}$, imputed m values of $z_{i,mis}$, denoted by $z_{i,mis}^{*(1)}, \dots, z_{i,mis}^{*(m)}$, from the estimated conditional probability $P(z_{i,mis} \mid z_{i,obs})$.
- Stage 2: For each imputed cell $z_i^{*(j)} = (z_{i,obs}, z_{i,mis}^{*(j)})$, the imputed value for $y_{i,mis}$ is randomly chosen among the full respondents in the same cell. (Joint hot deck within imputation cell)

Variance estimation

- Kim and Fuller (2004) proposed a variance estimation method for fractional imputation under the cell mean model.
- Kim, Fuller, and Bell (2011) applied the method to variance estimation for income estimates in the 2000 Census long form data.

Example: Jackknife for Fractional Imputation in Kim and Fuller (2004)

Unit	W _i W _{ij} *	<i>Y</i> ₁	<i>Y</i> ₂	$w_i^{(1)}w_{ij}^{*(1)}$	$w_i^{(2)}w_{ij}^{*(2)}$	 $w_i^{(5)}w_{ij}^{*(5)}$
1	0.10	2	1	0	0.111	0.111
2	0.10	2	2	0.111	0	0.111
3	0.10	1	3	0.111	0.111	0.111
4	0.10	4	4	0.111	0.111	0.111
5	0.10	2	5	0.111	0.111	0
6	0.05	3	1*	$0.111(0.5-\phi_1)$	0.055	$0.111 (0.5 + \phi_5)$
	0.05	3	5*	$0.111(0.5+\phi_1)$	0.055	$0.111 (0.5 - \phi_5)$
7	0.10	5	3	0.111	0.111	0.111
8	0.10	7	6	0.111	0.111	0.111
9	0.10	8	9	0.111	0.111	0.111
10	0.05	5*	3*	0.055	0.055	0.055
	0.05	7*	6*	0.056	0.056	0.056

Example (Continued)

Unit	w _i w _{ij} *	<i>Y</i> ₁	<i>Y</i> ₂	$W_i^{(6)}W_{ij}^{*(6)}$	$w_{i}^{(7)}w_{ij}^{*(7)}$	 $W_i^{(10)}W_{ij}^{*(10)}$
1	0.10	2	1	0.111	0.111	0.111
2	0.10	2	2	0.111	0.111	0.111
3	0.10	1	3	0.111	0.111	0.111
4	0.10	4	4	0.111	0.111	0.111
5	0.10	2	5	0.111	0.111	0.111
6	0.05	3	1*	0	0.055	0.055
	0.05	3	5*	0	0.056	0.056
7	0.10	5	3	0.111	0	0.111
8	0.10	7	6	0.111	0.111	0.111
9	0.10	8	9	0.111	0.111	0.111
10	0.05	5*	3*	0.55	$0.111(0.5-\phi_7)$	0
	0.05	7*	6*	0.56	$0.111 (0.5 + \phi_7)$	0

Variance estimation for fractional imputation

ullet Variance estimator is a function of ϕ_k 's :

$$\hat{V}_{\phi} = \sum_{k=1}^{L} c_k \left(\sum_{i \in A_R} \alpha_{\phi,i}^{(k)} y_i - \sum_{i \in A_R} \alpha_i y_i \right)^2$$

- Naive variance estimator ($\phi_k \equiv 0$) : Underestimation
- ullet Increasing the ϕ_k will increase the value of variance estimator
- How to decide ϕ_k ?

$$E\left(\hat{V}_{\phi}\right) - Var\left(\hat{\theta}_{I}\right) = E\left\{\sum_{g=1}^{G} \sum_{i \in A_{R}} \left[\sum_{k=1}^{L} c_{k} \left(\alpha_{\phi,i}^{(k)} - \alpha_{i}\right)^{2} - \alpha_{i}^{2}\right] \sigma_{g}^{2}\right\}$$

Variance estimation for fractional imputation

Kim and Fuller (2004) showed that if

$$\sum_{i \in A_B} w_{ij}^{*(k)} = 1 \tag{C.1}$$

and

$$\sum_{i \in A_{Rg}} \sum_{k=1}^{L} c_k \left(\alpha_i^{(k)} - \alpha_i \right)^2 = \sum_{i \in A_{Rg}} \alpha_i^2, \tag{C.2}$$

then the replication variance estimator defined by

$$\hat{V}_{I} = \sum_{k=1}^{L} c_{k} \left(\hat{\theta}_{I}^{(k)} - \hat{\theta}_{I} \right)^{2},$$

where $\hat{\theta}_{i}^{(k)} = \sum_{i \in A_R} \alpha_{i}^{(k)} y_i$, is unbiased for the total variance under the cell mean model.

Simulation Setup

• Three variables of size n = 300 are generated:

$$Y_1 \sim U(0,2)$$

 $Y_2 = 1 + Y_1 + e_2$
 $Y_3 = 2 + Y_1 + 0.5y_2 + 0.5e_3$

where e_2 and e_3 are independently generated from a standard normal distribution truncated outside [-3, 3].

• Response indicator functions for Y_1 , Y_2 , Y_3 :

$$\delta_1, \delta_2, \delta_3 \stackrel{i.i.d.}{\sim} \mathsf{Bernoulli}(0.7)$$

• Interested in $\theta_1 = E(Y_1)$, $\theta_2 = E(Y_2)$, $\theta_3 = E(Y_3)$, $\theta_4 = P(Y_1 < 1, Y_2 < 2)$, and $\theta_5 = E(Y_3 \mid D = 1)$ with $D \sim Bernoulli(0.3)$.

Simulation Setup

- B = 2,000 simulation samples.
- Multivariate fractional hot deck imputation was used with m=5 fractional imputation.
- Categorical transformation (with 4 categories) was used to each of Y_1 , Y_2 , and Y_3 .
- Within imputation cell, joint hot deck imputation was used.

Results: Point estimation

Table 1 Point estimation

Parameter	Method	Mean	Std Var.
θ_1	Complete Data	1.00	100
	FHDI	1.00	135
θ_2	Complete Data	2.00	100
	FHDI	2.00	142
θ_3	Complete Data	4.00	100
	FHDI	4.00	132
θ_4	Complete Data	0.34	100
Proportion	FHDI	0.33	140
θ_5	Complete Data	4.00	100
Domain Mean	FHDI	4.00	97

Results: Variance estimation

 Table 2
 Variance estimation

Parameter	Relative Bias (%)
$V(\hat{ heta}_1)$	6.69
$V(\hat{ heta}_2)$	-0.79
$V(\hat{ heta}_3)$	4.61
$V(\hat{ heta}_4)$	3.82
$V(\hat{\theta}_5)$	6.50

Conclusion

- Fractional hot deck imputation is considered.
- Categorical data transformation was used for approximation.
 - Does not rely on parametric model assumptions.
 - Two-stage imputation
 - 1: Imputation of cells (using conditional cell probability)
 - 2 Stage 2: Joint hot deck imputation within imputation cell.
- Replication-based approach for imputation variance estimation.
- Useful for general-purpose estimation, including domain estimation.
- To be implemented in SAS: Proc SurveyImpute